Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 13(1): 18260, 2023 Oct 25.
Article in English | MEDLINE | ID: mdl-37880280

ABSTRACT

This study aims to assess the practicality of utilizing artificial intelligence (AI) to replicate the adsorption capability of functionalized carbon nanotubes (CNTs) in the context of methylene blue (MB) removal. The process of generating the carbon nanotubes involved the pyrolysis of acetylene under conditions that were determined to be optimal. These conditions included a reaction temperature of 550 °C, a reaction time of 37.3 min, and a gas ratio (H2/C2H2) of 1.0. The experimental data pertaining to MB adsorption on CNTs was found to be extremely well-suited to the Pseudo-second-order model, as evidenced by an R2 value of 0.998, an X2 value of 5.75, a qe value of 163.93 (mg/g), and a K2 value of 6.34 × 10-4 (g/mg min).The MB adsorption system exhibited the best agreement with the Langmuir model, yielding an R2 of 0.989, RL value of 0.031, qm value of 250.0 mg/g. The results of AI modelling demonstrated a remarkable performance using a recurrent neural network, achieving with the highest correlation coefficient of R2 = 0.9471. Additionally, the feed-forward neural network yielded a correlation coefficient of R2 = 0.9658. The modeling results hold promise for accurately predicting the adsorption capacity of CNTs, which can potentially enhance their efficiency in removing methylene blue from wastewater.

2.
Nanomaterials (Basel) ; 12(9)2022 May 03.
Article in English | MEDLINE | ID: mdl-35564254

ABSTRACT

For companies, notably in the realms of energy and power supply, the essential requirement for highly efficient thermal transport solutions has become a serious concern. Current research highlighted the use of metallic oxides and carbon-based nanofluids as heat transfer fluids. This work examined two carbon forms (PEG@GNPs & PEG@TGr) and two types of metallic oxides (Al2O3 & SiO2) in a square heated pipe in the mass fraction of 0.1 wt.%. Laboratory conditions were as follows: 6401 ≤ Re ≤ 11,907 and wall heat flux = 11,205 W/m2. The effective thermal-physical and heat transfer properties were assessed for fully developed turbulent fluid flow at 20-60 °C. The thermal and hydraulic performances of nanofluids were rated in terms of pumping power, performance index (PI), and performance evaluation criteria (PEC). The heat transfer coefficients of the nanofluids improved the most: PEG@GNPs = 44.4%, PEG@TGr = 41.2%, Al2O3 = 22.5%, and SiO2 = 24%. Meanwhile, the highest augmentation in the Nu of the nanofluids was as follows: PEG@GNPs = 35%, PEG@TGr = 30.1%, Al2O3 = 20.6%, and SiO2 = 21.9%. The pressure loss and friction factor increased the highest, by 20.8-23.7% and 3.57-3.85%, respectively. In the end, the general performance of nanofluids has shown that they would be a good alternative to the traditional working fluids in heat transfer requests.

3.
Entropy (Basel) ; 22(5)2020 May 14.
Article in English | MEDLINE | ID: mdl-33286321

ABSTRACT

In this study, the analysis of the extreme sea level was carried out by using 10 years (2007-2016) of hourly tide gauge data of Karachi port station along the Pakistan coast. Observations revealed that the magnitudes of the tides usually exceeded the storm surges at this station. The main observation for this duration and the subsequent analysis showed that in June 2007 a tropical Cyclone "Yemyin" hit the Pakistan coast. The joint probability method (JPM) and the annual maximum method (AMM) were used for statistical analysis to find out the return periods of different extreme sea levels. According to the achieved results, the AMM and JPM methods erre compatible with each other for the Karachi coast and remained well within the range of 95% confidence. For the JPM method, the highest astronomical tide (HAT) of the Karachi coast was considered as the threshold and the sea levels above it were considered extreme sea levels. The 10 annual observed sea level maxima, in the recent past, showed an increasing trend for extreme sea levels. In the study period, the increment rates of 3.6 mm/year and 2.1 mm/year were observed for mean sea level and extreme sea level, respectively, along the Karachi coast. Tidal analysis, for the Karachi tide gauge data, showed less dependency of the extreme sea levels on the non-tidal residuals. By applying the Merrifield criteria of mean annual maximum water level ratio, it was found that the Karachi coast was tidally dominated and the non-tidal residual contribution was just 10%. The examination of the highest water level event (13 June 2014) during the study period, further favored the tidal dominance as compared to the non-tidal component along the Karachi coast.

4.
PLoS One ; 15(9): e0239509, 2020.
Article in English | MEDLINE | ID: mdl-32986717

ABSTRACT

In the past few decades, there has been a rapid growth in the concentration of nitrogenous compounds such as nitrate-nitrogen and ammonia-nitrogen in rivers, primarily due to increasing agricultural and industrial activities. These nitrogenous compounds are mainly responsible for eutrophication when present in river water, and for 'blue baby syndrome' when present in drinking water. High concentrations of these compounds in rivers may eventually lead to the closure of treatment plants. This study presents a training and a selection approach to develop an optimum artificial neural network model for predicting monthly average nitrate-N and monthly average ammonia-N. Several studies have predicted these compounds, but most of the proposed procedures do not involve testing various model architectures in order to achieve the optimum predicting model. Additionally, none of the models have been trained for hydrological conditions such as the case of Malaysia. This study presents models trained on the hydrological data from 1981 to 2017 for the Langat River in Selangor, Malaysia. The model architectures used for training are General Regression Neural Network (GRNN), Multilayer Neural Network and Radial Basis Function Neural Network (RBFNN). These models were trained for various combinations of internal parameters, input variables and model architectures. Post-training, the optimum performing model was selected based on the regression and error values and plot of predicted versus observed values. Optimum models provide promising results with a minimum overall regression value of 0.92.


Subject(s)
Nitrogen/chemistry , Rivers/chemistry , Agriculture/methods , Environmental Monitoring/methods , Hydrology/methods , Malaysia , Neural Networks, Computer , Water Pollutants, Chemical/chemistry , Water Quality
5.
Molecules ; 25(7)2020 Mar 26.
Article in English | MEDLINE | ID: mdl-32225061

ABSTRACT

In the recent decade, deep eutectic solvents (DESs) have occupied a strategic place in green chemistry research. This paper discusses the application of DESs as functionalization agents for multi-walled carbon nanotubes (CNTs) to produce novel adsorbents for the removal of 2,4-dichlorophenol (2,4-DCP) from aqueous solution. Also, it focuses on the application of the feedforward backpropagation neural network (FBPNN) technique to predict the adsorption capacity of DES-functionalized CNTs. The optimum adsorption conditions that are required for the maximum removal of 2,4-DCP were determined by studying the impact of the operational parameters (i.e., the solution pH, adsorbent dosage, and contact time) on the adsorption capacity of the produced adsorbents. Two kinetic models were applied to describe the adsorption rate and mechanism. Based on the correlation coefficient (R2) value, the adsorption kinetic data were well defined by the pseudo second-order model. The precision and efficiency of the FBPNN model was approved by calculating four statistical indicators, with the smallest value of the mean square error being 5.01 × 10-5. Moreover, further accuracy checking was implemented through the sensitivity study of the experimental parameters. The competence of the model for prediction of 2,4-DCP removal was confirmed with an R2 of 0.99.


Subject(s)
Nanotubes, Carbon/chemistry , Neural Networks, Computer , Phenols/chemistry , Solvents/chemistry , Water Pollutants, Chemical/chemistry , Adsorption , Algorithms , Kinetics , Models, Theoretical , Water Purification
6.
Sci Rep ; 10(1): 4684, 2020 03 13.
Article in English | MEDLINE | ID: mdl-32170078

ABSTRACT

In nature, streamflow pattern is characterized with high non-linearity and non-stationarity. Developing an accurate forecasting model for a streamflow is highly essential for several applications in the field of water resources engineering. One of the main contributors for the modeling reliability is the optimization of the input variables to achieve an accurate forecasting model. The main step of modeling is the selection of the proper input combinations. Hence, developing an algorithm that can determine the optimal input combinations is crucial. This study introduces the Genetic algorithm (GA) for better input combination selection. Radial basis function neural network (RBFNN) is used for monthly streamflow time series forecasting due to its simplicity and effectiveness of integration with the selection algorithm. In this paper, the RBFNN was integrated with the Genetic algorithm (GA) for streamflow forecasting. The RBFNN-GA was applied to forecast streamflow at the High Aswan Dam on the Nile River. The results showed that the proposed model provided high accuracy. The GA algorithm can successfully determine effective input parameters in streamflow time series forecasting.

7.
PLoS One ; 14(5): e0217499, 2019.
Article in English | MEDLINE | ID: mdl-31150443

ABSTRACT

Reference evapotranspiration (ET0) plays a fundamental role in irrigated agriculture. The objective of this study is to simulate monthly ET0 at a meteorological station in India using a new method, an improved support vector machine (SVM) based on the cuckoo algorithm (CA), which is known as SVM-CA. Maximum temperature, minimum temperature, relative humidity, wind speed and sunshine hours were selected as inputs for the models used in the simulation. The results of the simulation using SVM-CA were compared with those from experimental models, genetic programming (GP), model tree (M5T) and the adaptive neuro-fuzzy inference system (ANFIS). The achieved results demonstrate that the proposed SVM-CA model is able to simulate ET0 more accurately than the GP, M5T and ANFIS models. Two major indicators, namely, root mean square error (RMSE) and mean absolute error (MAE), indicated that the SVM-CA outperformed the other methods with respective reductions of 5-15% and 5-17% compared with the GP model, 12-21% and 10-22% compared with the M5T model, and 7-15% and 5-18% compared with the ANFIS model, respectively. Therefore, the proposed SVM-CA model has high potential for accurate simulation of monthly ET0 values compared with the other models.


Subject(s)
Agricultural Irrigation , Environmental Monitoring/methods , Fuzzy Logic , Rivers , Support Vector Machine , Temperature , Wind
8.
PLoS One ; 14(5): e0217634, 2019.
Article in English | MEDLINE | ID: mdl-31150467

ABSTRACT

Solar energy is a major type of renewable energy, and its estimation is important for decision-makers. This study introduces a new prediction model for solar radiation based on support vector regression (SVR) and the improved particle swarm optimization (IPSO) algorithm. The new version of algorithm attempts to enhance the global search ability for the PSO. In practice, the SVR method has a few parameters that should be determined through a trial-and-error procedure while developing the prediction model. This procedure usually leads to non-optimal choices for these parameters and, hence, poor prediction accuracy. Therefore, there is a need to integrate the SVR model with an optimization algorithm to achieve optimal choices for these parameters. Thus, the IPSO algorithm, as an optimizer is integrated with SVR to obtain optimal values for the SVR parameters. To examine the proposed model, two solar radiation stations, Adana, Antakya and Konya, in Turkey, are considered for this study. In addition, different models have been tested for this prediction, namely, the M5 tree model (M5T), genetic programming (GP), SVR integrated with four different optimization algorithms SVR-PSO, SVR-IPSO, Genetic Algorithm (SVR-GA), FireFly Algorithm (SVR-FFA) and the multivariate adaptive regression (MARS) model. The sensitivity analysis is performed to achieve the highest accuracy level of the prediction by choosing different input parameters. Several performance measuring indices have been considered to examine the efficiency of all the prediction methods. The results show that SVR-IPSO outperformed M5T and MARS.


Subject(s)
Solar Energy , Sunlight , Support Vector Machine , Algorithms , Forecasting , Humans , Humidity , Regression Analysis , Turkey , Wind
9.
Environ Sci Pollut Res Int ; 24(13): 12104-12117, 2017 May.
Article in English | MEDLINE | ID: mdl-28353110

ABSTRACT

Several research efforts have been conducted to monitor and analyze the impact of environmental factors on the heavy metal concentrations and physicochemical properties of water bodies (lakes and rivers) in different countries worldwide. This article provides a general overview of the previous works that have been completed in monitoring and analyzing heavy metals. The intention of this review is to introduce the historical studies to distinguish and understand the previous challenges faced by researchers in analyzing heavy metal accumulation. In addition, this review introduces a survey on the importance of time increment sampling (monthly and/or seasonally) to comprehend and determine the rate of change of different parameters on a monthly and seasonal basis. Furthermore, suggestions are made for future research to achieve more understandable figures on heavy metal accumulation by considering climate conditions. Thus, the intent of the current study is the provision of reliable models for predicting future heavy metal accumulation in water bodies in different climates and pollution conditions so that water management can be achieved using intelligent proactive strategies and artificial neural network (ANN) techniques.


Subject(s)
Lakes/chemistry , Metals, Heavy , Rivers/chemistry , Environmental Monitoring , Water Pollutants, Chemical
SELECTION OF CITATIONS
SEARCH DETAIL
...