Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Mol Biol Rep ; 51(1): 119, 2024 Jan 16.
Article in English | MEDLINE | ID: mdl-38227086

ABSTRACT

BACKGROUND: Papaya (Carica papaya) is a tropical fruit of great economic and nutritional importance, loved for its sweet and delicious flesh. However, papaya cultivation faces serious challenges in the form of Begomovirus attacks. Begomoviruses are a group of viruses that pose a serious threat to plants worldwide. Including papaya, Begomovirus has become a significant threat to papaya production in various parts of the world and has been identified in several regions in Indonesia. METHODS: DNA was extracted from seven samples representing different papaya growing areas using a Plant Genomic DNA Mini Kit. Genomic DNA from the samples was subjected to PCR using universal primers of AC2, AC1, SPG1 and SPG2. The PCR products then sequenced using the dideoxy (Sanger) approach. The obtained sequence then compared to the gene bank using BLAST software available at NCBI. Multiple sequence alignment and phylogenetic tree construction were analyzed using the MEGA11 program. RESULTS: Detection based on viral nucleic acid in papaya plants in Pesawaran, Lampung Province with seven sampling points using universal primers SPG1/SPG2 showed positive results for Begomovirus infection with visible DNA bands measuring ± 900 bp. Direct nucleotide sequencing using SPG1/SPG2 primers for the AC2 and AC1 genes of the Begomovirus and confirmed by the BLAST program showed that papaya samples were infected with Ageratum yellow vein virus (AYVV). The phylogenetic results show that AYVV from papaya samples has a close relationship with the AYVV group from several other countries, with 98% homology. CONCLUSION: In the papaya cultivation area in Pesawaran, Lampung province, it was identified as Begomovirus, Ageratum yellow vein virus (AYVV) species and is closely related to the AYVV group from several other countries. Overall, our study further suggests that Ageratum acts as an alternative host and reservoir for Begomovirus.


Subject(s)
Begomovirus , Carica , Genetic Diseases, X-Linked , Intellectual Disability , Spastic Paraplegia, Hereditary , Begomovirus/genetics , Indonesia , Phylogeny , Vegetables , DNA Primers , DNA, Plant
2.
Plant Dis ; 104(9): 2469-2480, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32628090

ABSTRACT

Phytophthora is an oomycete genus with worldwide distribution, and many of its species cause destructive diseases. In Japan, Phytophthora species are listed as quarantine organisms with the exception of Phytophthora nicotianae. For effective quarantine control, we designed a Phytophthora genus-specific loop-mediated isothermal amplification (LAMP) primer set and a P. nicotianae species-specific quenching probe (QProbe) to establish a simultaneous LAMP-based detection method. We confirmed the specificity of the genus-specific primers, and all 161 taxa were detected. No other species in the closely related genera Pythium and Phytopythium gave positive results with the exception of two species, Phytopythium delawarense and Phytopythium fagopyri. These two species gave inconsistent results. We used annealing curve analysis with the QProbe to demonstrate that P. nicotianae could be distinguished from other species. DNA from inoculated and naturally infected plants was extracted using a time-saving extraction kit and subjected to the simultaneous detection method. We confirmed that all Phytophthora DNAs in the plant samples were detected, and P. nicotianae was specifically identified. This simultaneous detection method will make quarantine inspections faster and easier.


Subject(s)
Phytophthora/genetics , Pythium , DNA Primers , Japan , Nucleic Acid Amplification Techniques
3.
PLoS One ; 13(12): e0209667, 2018.
Article in English | MEDLINE | ID: mdl-30586460

ABSTRACT

The purpose of this study was to clarify the genetic diversity of Phytopythium helicoides and to understand the transmission mode of the pathogen in Japan. In total, 232 P. helicoides isolates were collected from various host plants and geographic origins, including farms and natural environments. We developed 6 novel microsatellite markers for use in the study and found 90 alleles among the 6 markers in the 232 isolates. The analysis of molecular variance suggested that P. helicoides has high variance within individuals and low fixation indices between populations. A phylogenetic analysis revealed that isolates collected from the same hosts and/or geographic origins were often grouped together. For example, several isolates from natural environments were grouped with isolates from nearby agricultural areas. On the other hand, 2 geographically distant populations collected from the same host plant had similar genotypes. Our results suggested that migration of the pathogen could be facilitated naturally via drainage systems or by human activity in the transport of agricultural materials.


Subject(s)
Genetics, Population , Oomycetes/genetics , Plant Diseases/genetics , Plants/microbiology , Alleles , Genetic Variation/genetics , Genotype , Japan , Microsatellite Repeats/genetics , Oomycetes/pathogenicity , Phylogeny , Plant Diseases/microbiology , Plant Roots/genetics , Plants/genetics
SELECTION OF CITATIONS
SEARCH DETAIL