Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Imaging Radiat Oncol ; 29: 100545, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38369991

ABSTRACT

Background and Purpose: Virtual Unenhanced images (VUE) from contrast-enhanced dual-energy computed tomography (DECT) eliminate manual suppression of contrast-enhanced structures (CES) or pre-contrast scans. CT intensity decreases in high-density structures outside the CES following VUE algorithm application. This study assesses VUE's impact on the radiotherapy workflow of gynecological tumors, comparing dose distribution and cone-beam CT-based (CBCT) position verification to contrast-enhanced CT (CECT) images. Materials and Methods: A total of 14 gynecological patients with contrast-enhanced CT simulation were included. Two CT images were reconstructed: CECT and VUE. Volumetric Modulated Arc Therapy (VMAT) plans generated on CECT were recalculated on VUE using both the CECT lookup table (LUT) and a dedicated VUE LUT. Gamma analysis assessed 3D dose distributions. CECT and VUE images were retrospectively registered to daily CBCT using Chamfer matching algorithm.. Results: Planning target volume (PTV) dose agreement with CECT was within 0.35% for D2%, Dmean, and D98%. Organs at risk (OARs) D2% agreed within 0.36%. A dedicated VUE LUT lead to smaller dose differences, achieving a 100% gamma pass rate for all subjects. VUE imaging showed similar translations and rotations to CECT, with significant but minor translation differences (<0.02 cm). VUE-based registration outperformed CECT. In 24% of CBCT-CECT registrations, inadequate registration was observed due to contrast-related issues, while corresponding VUE images achieved clinically acceptable registrations. Conclusions: VUE imaging in the radiotherapy workflow is feasible, showing comparable dose distributions and improved CBCT registration results compared to CECT. VUE enables automated bone registration, limiting inter-observer variation in the Image-Guided Radiation Therapy (IGRT) process.

2.
Eur Radiol ; 32(1): 517-523, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34132877

ABSTRACT

PURPOSE: This study evaluates the performance of a mobile and compact hybrid C-arm scanner (referred to as IXSI) that is capable of simultaneous acquisition of 2D fluoroscopic and nuclear projections and 3D image reconstruction in the intervention room. RESULTS: The impact of slightly misaligning the IXSI modalities (in an off-focus geometry) was investigated for the reduction of the fluoroscopic and nuclear interference. The 2D and 3D nuclear image quality of IXSI was compared with a clinical SPECT/CT scanner by determining the spatial resolution and sensitivity of point sources and by performing a quantitative analysis of the reconstructed NEMA image quality phantom. The 2D and 3D fluoroscopic image of IXSI was compared with a clinical CBCT scanner by visualizing the Fluorad A+D image quality phantom and by visualizing a reconstructed liver nodule phantom. Finally, the feasibility of dynamic simultaneous nuclear and fluoroscopic imaging was demonstrated by injecting an anthropomorphic phantom with a mixture of iodinated contrast and 99mTc. CONCLUSION: Due to the divergent innovative hybrid design of IXSI, concessions were made to the nuclear and fluoroscopic image qualities. Nevertheless, IXSI realizes unique image guidance that may be beneficial for several types of procedures. KEY POINTS: • IXSI can perform time-resolved planar (2D) simultaneous fluoroscopic and nuclear imaging. • IXSI can perform SPECT/CBCT imaging (3D) inside the intervention room.


Subject(s)
Imaging, Three-Dimensional , Tomography, Emission-Computed, Single-Photon , Cone-Beam Computed Tomography , Fluoroscopy , Humans , Image Processing, Computer-Assisted , Phantoms, Imaging
SELECTION OF CITATIONS
SEARCH DETAIL