Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Transl Oncol ; 34: 101674, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37224765

ABSTRACT

Breast cancer is the most common cancer in women; it has been affecting the lives of millions each year globally and microfluidic devices seem to be a promising method for the future advancements in this field. This research uses a dynamic cell culture condition in a microfluidic concentration gradient device, helping us to assess breast anticancer activities of probiotic strains against MCF-7 cells. It has been shown that MCF-7 cells could grow and proliferate for at least 24 h; however, a specific concentration of probiotic supernatant could induce more cell death signaling population after 48 h. One of our key findings was that our evaluated optimum dose (7.8 mg/L) was less than the conventional static cell culture treatment dose (12 mg/L). To determine the most effective dose over time and the percentage of apoptosis versus necrosis, flowcytometric assessment was performed. Exposing the MCF-7 cells to probiotic supernatant after 6, 24 and 48 h, confirmed that the apoptotic and necrotic cell death signaling were concentration and time dependent. We have shown a case that these types of microfluidics platforms performing dynamic cell culture could be beneficial in personalized medicine and cancer therapy.

2.
Sci Rep ; 12(1): 15789, 2022 Sep 22.
Article in English | MEDLINE | ID: mdl-36138046

ABSTRACT

Considering the severe hazards of abnormal concentration level of H2S as an extremely toxic gas to the human body and due to the disability of olfactory system in sensing toxic level of H2S concentration, a reliable, sensitive, selective and rapid method for the detection of H2S is proposed and its efficacy is analyzed through simulation. The proposed system is based on the deflection of a laser beam in response to the temperature variations in its path. In order to provide selectivity and improve sensitivity, gold nanostructures were employed in the system. The selectivity was introduced based on the thiol-gold interactions and the sensitivity of the system was enhanced due to the modification of plasmon resonance behavior of gold nanostructures in response to gas adsorption. Results from our analysis demonstrate that compared with Au and SiO2-Au, the Au nanomatryoshka structures (Au-SiO2-Au) showed the highest sensitivity due to promoting higher deflections of the laser beam.


Subject(s)
Nanostructures , Silicon Dioxide , Gold/chemistry , Humans , Lasers , Nanostructures/chemistry , Sulfhydryl Compounds
4.
Stem Cell Rev Rep ; 18(8): 2566-2592, 2022 12.
Article in English | MEDLINE | ID: mdl-35508757

ABSTRACT

Cardiovascular diseases (CVDs) are globally known to be important causes of mortality and disabilities. Common treatment strategies for CVDs, such as pharmacological therapeutics impose serious challenges due to the failure of treatments for myocardial necrosis. By contrast, stem cells (SCs) based therapies are seen to be promising approaches to CVDs treatment. In such approaches, cardiomyocytes are differentiated from SCs. To fulfill SCs complete potential, the method should be appointed to generate cardiomyocytes with more mature structure and well-functioning operations. For heart repairing applications, a greatly scalable and medical-grade cardiomyocyte generation must be used. Nonetheless, there are some challenges such as immune rejection, arrhythmogenesis, tumorigenesis, and graft cell death potential. Herein, we discuss the types of potential SCs, and commonly used methods including embryoid bodies related techniques, co-culture, mechanical stimulation, and electrical stimulation and their applications, advantages and limitations in this field. An estimated 17.9 million people died from CVDs in 2019, representing 32 % of all global deaths. Of these deaths, 85 % were due to heart attack and stroke.


Subject(s)
Myocytes, Cardiac , Stem Cells , Humans , Cell Differentiation/physiology , Coculture Techniques
5.
ACS Appl Mater Interfaces ; 12(3): 3279-3300, 2020 Jan 22.
Article in English | MEDLINE | ID: mdl-31873003

ABSTRACT

Among the different synthetic polymers developed for biomedical applications, poly(lactic-co-glycolic acid) (PLGA) has attracted considerable attention because of its excellent biocompatibility and biodegradability. Nanocomposites based on PLGA and metal-based nanostructures (MNSs) have been employed extensively as an efficient strategy to improve the structural and functional properties of PLGA polymer. The MNSs have been used to impart new properties to PLGA, such as antimicrobial properties and labeling. In the present review, the different strategies available for the fabrication of MNS/PLGA nanocomposites and their applications in the biomedical field will be discussed, beginning with a description of the preparation routes, antimicrobial activity, and cytotoxicity concerns of MNS/PLGA nanocomposites. The biomedical applications of these nanocomposites, such as carriers and scaffolds in tissue regeneration and other therapies are subsequently reviewed. In addition, the potential advantages of using MNS/PLGA nanocomposites in treatment illnesses are analyzed based on in vitro and in vivo studies, to support the potential of these nanocomposites in future research in the biomedical field.


Subject(s)
Anti-Infective Agents/chemistry , Anti-Infective Agents/pharmacology , Metals/chemistry , Nanocomposites/chemistry , Polyglycolic Acid/chemistry , Animals , Humans , Metals/pharmacology , Nanocomposites/toxicity , Polyglycolic Acid/toxicity
6.
Int J Biol Macromol ; 129: 1034-1039, 2019 May 15.
Article in English | MEDLINE | ID: mdl-30742919

ABSTRACT

Nowadays, regenerating peripheral nerves injuries (PNIs) remain a major clinical challenge, which has gained a great attention between scientists. Here, we represent a nanocomposite based on silk fibroin reinforced gold nanorods (SF/GNRs) to evaluate the proliferation and attachment of PC12 cells. The morphological characterization of nanocomposites with transmission electron microscopy (TEM) and Scanning electron microscopy (SEM) showed that the fabricated scaffolds have porous structure with interconnected pores that is suitable for cell adhesion and growth. GNRs significantly improved the poor electrical conductivity of bulk silk fibroin scaffold. Evaluating the morphology of PC12 cells on the scaffold also confirmed the normal morphology of cells with good rate of adhesion. SF/GNRs nanocomposites showed better cellular attachment, growth and proliferation without any toxicity compared with bulk SF scaffold. Moreover, immunostaining studies represented the overexpression of neural specific proteins like nestin and neuron specific enolase (NSE) in the cells cultured on SF/GNRs nanocomposites in comparison to neat SF scaffolds.


Subject(s)
Biocompatible Materials/pharmacology , Fibroins/chemistry , Gold/chemistry , Nanocomposites/chemistry , Nanotubes/chemistry , Peripheral Nerves/cytology , Tissue Engineering , Animals , Biocompatible Materials/chemistry , Cell Adhesion/drug effects , Cell Survival/drug effects , Electric Conductivity , PC12 Cells , Rats
SELECTION OF CITATIONS
SEARCH DETAIL
...