Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Cell ; 152(1-2): 316-26, 2013 Jan 17.
Article in English | MEDLINE | ID: mdl-23332763

ABSTRACT

We propose a concept for the folding and self-assembly of the pore-forming TatA complex from the Twin-arginine translocase and of other membrane proteins based on electrostatic "charge zippers." Each subunit of TatA consists of a transmembrane segment, an amphiphilic helix (APH), and a C-terminal densely charged region (DCR). The sequence of charges in the DCR is complementary to the charge pattern on the APH, suggesting that the protein can be "zipped up" by a ladder of seven salt bridges. The length of the resulting hairpin matches the lipid bilayer thickness, hence a transmembrane pore could self-assemble via intra- and intermolecular salt bridges. The steric feasibility was rationalized by molecular dynamics simulations, and experimental evidence was obtained by monitoring the monomer-oligomer equilibrium of specific charge mutants. Similar "charge zippers" are proposed for other membrane-associated proteins, e.g., the biofilm-inducing peptide TisB, the human antimicrobial peptide dermcidin, and the pestiviral E(RNS) protein.


Subject(s)
Escherichia coli Proteins/chemistry , Escherichia coli Proteins/metabolism , Membrane Transport Proteins/chemistry , Membrane Transport Proteins/metabolism , Amino Acid Sequence , Bacillus subtilis/metabolism , Bacterial Toxins/chemistry , Escherichia coli Proteins/genetics , Humans , Membrane Transport Proteins/genetics , Molecular Dynamics Simulation , Molecular Sequence Data , Mutagenesis, Site-Directed , Peptides/chemistry , Peptides/metabolism , Protein Folding , Sequence Alignment , Viral Proteins/chemistry , Viral Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL