Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Opt Express ; 32(3): 3123-3137, 2024 Jan 29.
Article in English | MEDLINE | ID: mdl-38297541

ABSTRACT

This study investigates the thermal compensation mechanism in dual-mode Si3N4 microresonators that demonstrates the ease of generation of single-solitons with nearly octave-wide spectral bandwidth. The deterministic creation of soliton frequency combs is achieved by merely switching the wavelength of a tunable laser or a semiconductor diode laser in a single step. The pump frequency detuning range that can sustain the soliton state is 30 gigahertz (GHz), which is approximately 100 times the resonance linewidth. Interestingly, these dual-mode resonators also support the coexistence of primary combs and solitons, enabling their utilization as functional microwave synthesizers. Furthermore, these resonators readily facilitate the generation of diverse multi-solitons and soliton crystals. This work presents a simplified system to access high-performance and versatile Kerr solitons, with wide-ranging applications in optical metrology, microwave photonics, and LiDAR.

2.
Opt Lett ; 46(14): 3436-3439, 2021 Jul 15.
Article in English | MEDLINE | ID: mdl-34264232

ABSTRACT

The soliton crystal (SC) was recently discovered as an extraordinary Kerr soliton state with regularly distributed soliton pulses and enhanced comb line power spaced by multiples of the cavity free spectral ranges (FSRs), which will significantly extend the application potential of microcombs in optical clock, signal processing, and terahertz wave systems. However, the reported SC spectra are generally narrow. In this Letter, we demonstrate the generation of a breathing SC in an aluminum nitride (AlN) microresonator (FSR ∼374GHz), featuring a near-octave-spanning (1150-2200 nm) spectral range and a terahertz repetition rate of ∼1.87THz. The measured 60 fs short pulses and low intensity-noise characteristics confirm the high coherence of the breathing SC. Broadband microcombs with various repetition rates of ∼0.75, ∼1.12, and ∼1.5THz were also realized in different microresonators of the same size. The proposed scheme shows a reliable design strategy for broadband soliton generation with versatile dynamic control over the comb line spacing.

3.
Opt Lett ; 46(3): 540-543, 2021 Feb 01.
Article in English | MEDLINE | ID: mdl-33528404

ABSTRACT

Octave-spanning optical frequency combs (OFCs) are essential for various applications, such as precision metrology and astrophysical spectrometer calibration. In this Letter, we demonstrate, for the first time to our knowledge, the generation of octave-spanning Kerr frequency combs ranging from 1150 to 2400 nm in aluminum nitride (AlN) microring resonators, by pumping the TM00 modes at 250 mW on-chip power. By simply adjusting the pump detuning, we observe the transition and coexistence of Kerr OFC and stimulated Raman scattering. For the TE00 mode in the same device, a broadband Raman-assisted frequency comb is demonstrated by adjusting the pump power and tuning. These results indicate a crucial development for the fundamentals of nonlinear dynamics and comb applications in AlN.

4.
Opt Express ; 28(13): 19270-19280, 2020 Jun 22.
Article in English | MEDLINE | ID: mdl-32672207

ABSTRACT

Single-crystal aluminum nitride (AlN) possessing both strong Pockels and Kerr nonlinear optical effects as well as a very large band gap is a fascinating optical platform for integrated nonlinear optics. In this work, fully etched AlN-on-sapphire microresonators with a high-Q of 2.1 × 106 for the TE00 mode are firstly demonstrated with the standard photolithography technique. A near octave-spanning Kerr frequency comb ranging from 1100 to 2150 nm is generated at an on-chip power of 406 mW for the TM00 mode. Due to the high confinement, the TE10 mode also excites a Kerr comb from 1270 to 1850nm at 316 mW. In addition, frequency conversion to visible light is observed during the frequency comb generation. Our work will lead to a large-scale, low-cost, integrated nonlinear platform based on AlN.

SELECTION OF CITATIONS
SEARCH DETAIL
...