Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 33
Filter
Add more filters










Publication year range
1.
Molecules ; 28(23)2023 Nov 25.
Article in English | MEDLINE | ID: mdl-38067504

ABSTRACT

In the present research, Livistona chinensis leaf extracts were utilized as reductants to bio-fabricate silver nanoparticles (LC-AgNPs) and this was followed by the evaluation of their antioxidant, antibacterial, and anticancer potential. Multiple parameters were optimized for the formation and fidelity of LC-AgNPs. The color shift of the reaction mixture from yellow to dark brown confirmed the LC-AgNPs formation. UV/VIS spectroscopy exhibited a surface plasmon resonance (SPR) band at 436 nm. The Fourier transform infrared (FTIR) spectroscopy spectrum depicted phytochemicals in the plant extract acting as bio-reducers for LC-AgNPs synthesis. The XRD pattern confirmed the presence of LC-AgNPs by showing peaks corresponding to 2θ angle at 8.24° (111), 38.16° (200), 44.20° (220), and 64.72° (311). Zetasizer analysis exhibited size distribution by intensity of LC-AgNPs with a mean value of 255.7 d. nm. Moreover, the zeta potential indicated that the AgNPs synthesized were stable. The irregular shape of LC-AgNPs with a mean average of 38.46 ± 0.26 nm was found by scanning electron microscopy. Furthermore, the antioxidant potential of LC-AgNPs was examined using a DPPH assay and was calculated to be higher in LC-AgNPs than in leaf extracts. The calculated IC50 values of the LC-AgNPs and plant extract are 85.01 ± 0.17 and 209.44 ± 0.24, respectively. The antibacterial activity of LC-AgNPs was investigated against Escherichia coli, Pseudomonas aeruginosa, and Bacillus subtilis as well as Staphylococcus aureus, and maximum potential was observed after 24 h against P. aeruginosa. Moreover, LC-AgNPs exhibited maximum anticancer potential against TPC1 cell lines compared to the plant extract. The findings suggested that LC-AgNPs could be used as antioxidant, antibacterial, and anticancer agents for the cure of free-radical-oriented bacterial and oncogenic diseases.


Subject(s)
Metal Nanoparticles , Silver , Silver/chemistry , Antioxidants/pharmacology , Metal Nanoparticles/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Free Radicals , Spectroscopy, Fourier Transform Infrared , Plant Extracts/pharmacology , Plant Extracts/chemistry
2.
Microorganisms ; 11(9)2023 Aug 26.
Article in English | MEDLINE | ID: mdl-37764007

ABSTRACT

Overuse of pesticides in agricultural soil and dye-polluted effluents severely contaminates the environment and is toxic to animals and humans making their removal from the environment essential. The present study aimed to assess the biodegradation of pesticides (cypermethrin (CYP) and imidacloprid (IMI)), and dyes (malachite green (MG) and Congo red (CR)) using biofilms of bacteria isolated from pesticide-contaminated soil and dye effluents. Biofilms of indigenous bacteria, i.e., Bacillus thuringiensis 2A (OP554568), Enterobacter hormaechei 4A (OP723332), Bacillus sp. 5A (OP586601), and Bacillus cereus 6B (OP586602) individually and in mixed culture were tested against CYP and IMI. Biofilms of indigenous bacteria i.e., Lysinibacillus sphaericus AF1 (OP589134), Bacillus sp. CF3 (OP589135) and Bacillus sp. DF4 (OP589136) individually and in mixed culture were tested for their ability to degrade dyes. The biofilm of a mixed culture of B. thuringiensis + Bacillus sp. (P7) showed 46.2% degradation of CYP compared to the biofilm of a mixed culture of B. thuringiensis + E. hormaechei + Bacillus sp. + B. cereus (P11), which showed significantly high degradation (70.0%) of IMI. Regarding dye biodegradation, a mixed culture biofilm of Bacillus sp. + Bacillus sp. (D6) showed 86.76% degradation of MG, which was significantly high compared to a mixed culture biofilm of L. sphaericus + Bacillus sp. (D4) that degraded only 30.78% of CR. UV-VIS spectroscopy revealed major peaks at 224 nm, 263 nm, 581 nm and 436 nm for CYP, IMI, MG and CR, respectively, which completely disappeared after treatment with bacterial biofilms. Fourier transform infrared (FTIR) analysis showed the appearance of new peaks in degraded metabolites and disappearance of a peak in the control spectrum after biofilm treatment. Thin layer chromatography (TLC) analysis also confirmed the degradation of CYP, IMI, MG and CR into several metabolites compared to the control. The present study demonstrates the biodegradation potential of biofilm-forming bacteria isolated from pesticide-polluted soil and dye effluents against pesticides and dyes. This is the first report demonstrating biofilm-mediated bio-degradation of CYP, IMI, MG and CR utilizing soil and effluent bacterial flora from Multan and Sheikhupura, Punjab, Pakistan.

3.
Microorganisms ; 11(2)2023 Jan 30.
Article in English | MEDLINE | ID: mdl-36838307

ABSTRACT

Antibiotic drug resistance is a global public health issue that demands new and novel therapeutic molecules. To develop new agents, animal secretions or products are used as an alternative agent to overcome this problem. In this study, earthworm (Pheretima posthuma) coelomic fluid (PCF), and body paste (PBP) were used to analyze their effects as antibiofilm agents against four bacterial isolates MH1 (Pseudomonas aeruginosa MT448672), MH2 (Escherichia coli MT448673), MH3 (Staphylococcus aureus MT448675), and MH4 (Klebsiella pneumoniae MT448676). Coelomic fluid extraction and body paste formation were followed by minimum inhibitory concentrations (MICs), biofilm formation time kinetics, and an antibiofilm assay, using heat and cold shock, sunlight exposure auto-digestion, and test tube methods. The results showed that the MIC values of PCF and PBP against S. aureus, P. aeruginosa, K. pneumoniae, and E. coli bacterial isolates ranged from 50 to 100 µg/mL, while, the results related to biofilm formation for P. aeruginosa, S. aureus, and K. pneumoniae strains were observed to be highly significantly increased (p < 0.005) after 72 h. E. coli produced a significant (p < 0.004) amount of biofilm after 48 h. Following time kinetics, the antibiofilm activity of PCF and PBP was tested at different concentrations (i.e., 25-200 µg/mL) against the aforementioned four strains (MH1-MH4). The findings of this study revealed that both PBP (5.61 ± 1.0%) and PCF (5.23 ± 1.5%) at the lowest concentration (25 µg/mL) showed non-significant (p > 0.05) antibiofilm activity against all the selected strains (MH1-MH4). At 50 µg/mL concentration, both PCF and PBP showed significant (p < 0.05) biofilm inhibition (<40%) for all isolates. Further, the biofilm inhibitory potential was also found to be more significant (p < 0.01) at 100 µg/mL of PCF and PBP, while it showed highly significant (p < 0.001) biofilm inhibition at 150 and 200 µg/mL concentrations. Moreover, more than 90% biofilm inhibition was observed at 200 µg/mL of PCF, while in the case of the PBP, <96% biofilm reduction (i.e., 100%) was also observed by all selected strains at 200 µg/mL. In conclusion, earthworm body fluid and paste have biologically active components that inhibit biofilm formation by various pathogenic bacterial strains. For future investigations, there is a need for further study to explore the potential bioactive components and investigate in depth their molecular mechanisms from a pharmaceutical perspective for effective clinical utilization.

4.
Mol Biol Rep ; 50(5): 3985-3997, 2023 May.
Article in English | MEDLINE | ID: mdl-36840848

ABSTRACT

BACKGROUND: With increased urbanization and industrialization, modern life has led to an anthropogenic impact on the biosphere. Heavy metals pollution and pollutants from black liquor (BL) have caused severe effects on environment and living organisms. Bacterial biofilm has potential to remediate heavy metals and remove BL from the environment. Hence, this study was planned to investigate the potential of microbial biofilms for the bioremediation of heavy metals and BL polluted environments. METHODS AND RESULTS: Eleven biofilm forming bacterial strains (SB1, SB2, SC1, AF1, 5A, BC-1, BC-2, BC-3, BC-4, BC-5 and BC-6) were isolated and identified upto species level via 16S rRNA gene sequencing. Biofilm strains belonging to Bacillus and Lysinibacillus sphaericus were used to remediate heavy metals (Pb, Ni, Mn, Zn, Cu, and Co). Atomic absorption spectroscopy showed significantly high (P ≤ 0.05) bioremediation potential by L. sphaericus biofilm (1462.0 ± 0.67 µgmL-1) against zinc (Zn). Similarly, Pseudomonas putida biofilm significantly (P ≤ 0.05) decolourized (65.1%) BL. Fourier transform infrared (FTIR) analysis of treated heavy metals showed the shifting of major peaks (1637 & 1629-1647, 1633 & 1635-1643, and 1638-1633 cm-1) corresponding to specific amide groups due to C = O stretching. CONCLUSION: The study suggested that biofilm of the microbial flora from tanneries and pulp paper effluents possesses a strong potential for heavy metals bioremediation and BL decolourization. To our knowledge, this is the first report showing promising biofilm remediation potential of bacterial flora of tanneries and pulp-paper effluent from Kasur and Sheikhupura, Punjab, Pakistan, against heavy metals and BL.


Subject(s)
Bacillus , Metals, Heavy , Pseudomonas putida , Biodegradation, Environmental , RNA, Ribosomal, 16S/genetics , Metals, Heavy/analysis , Zinc/analysis , Pseudomonas putida/genetics , Bacillus/genetics , Biofilms
5.
RSC Adv ; 13(2): 1434-1445, 2023 Jan 03.
Article in English | MEDLINE | ID: mdl-36686938

ABSTRACT

A low temperature alkali (LTA) pretreatment method was used to treat wheat straw. In order to obtain good results, different factors like temperature, incubation time, NaOH concentration and solid to liquid ratio for the pretreatment process were optimized. Wheat straw is a potential biomass for the production of monomeric sugars. The objective of the current study was to observe the saccharification (%) of wheat straw with immobilized magnetic nanoparticles (MNPs). For this purpose, immobilized MNPs of purified ß-xylanase enzyme was used for hydrolysis of pretreated wheat straw. Wheat straw was pretreated using the LTA method and analyzed by SEM analysis. After completion of the saccharification process, saccharification% was calculated by using a DNS method. Scanning electron micrographs revealed that the hemicellulose, cellulose and lignin were partially removed and changes in the cell wall structure of the wheat straw had caused it to become deformed, increasing the specific surface area, so more fibers of the wheat straw were exposed to the immobilized ß-xylanase enzyme after alkali pretreatment. The maximum saccharification potential of wheat straw was about 20.61% obtained after pretreatment with optimized conditions of 6% NaOH, 1/10 S/L, 30 °C and 72 hours. Our results indicate the reusability of the ß-xylanase enzyme immobilized magnetic nanoparticles and showed a 15% residual activity after the 11th cycle. HPLC analysis of the enzyme-hydrolyzed filtrate also revealed the presence of sugars like xylose, arabinose, xylobiose, xylotriose and xylotetrose. The time duration of the pretreatment has an important effect on thermal energy consumption for the low-temperature alkali method.

6.
RSC Adv ; 12(53): 34482-34495, 2022 Nov 29.
Article in English | MEDLINE | ID: mdl-36545586

ABSTRACT

Present study was aimed to clone and express the esterase encoding gene from Bacillus thuringiensis in E. coli BL21. Purification of recombinant esterase enzyme was achieved up to 48.6 purification folds by ion exchange chromatography with specific activity of 126.36 U mg-1. Molecular weight of esterase enzyme was 29 kDa as measured by SDS-PAGE. Purified esterase enzyme showed stability up to 90% at 90 °C and remained stable in a wide pH range (8-11). Molecular docking strengthens the experimental results by showing the higher binding energy with p-NP-butyrate. Enzyme activity was found to be reduced by EDTA but enhanced in the presence of other metal ions. Enzyme activity was reduced with 1% SDS, PMSF, and urea but organic solvents did not show considerable impact on it even at higher concentrations. Purified recombinant esterase was also found to be compatible with commercial laundry detergents and showed very good stability (up to 90%). All these properties proved the esterase enzyme from B. thuringensis a significant addition in detergent industry.

7.
Adv Colloid Interface Sci ; 306: 102718, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35714572

ABSTRACT

This review discusses the classification, characteristics, and applications of biosurfactants. The biosynthesis pathways for different classes of biosurfactants are reviewed. An in-depth analysis of reported research is carried out emphasizing the synthetic pathways, culture media compositions, and influencing factors on production yield of biosurfactants. The environmental, pharmaceutical, industrial, and other applications of biosurfactants are discussed in detail. A special attention is given to the biosurfactants application in combating the pandemic COVID-19. It is found that biosurfactant production from waste materials can play a significant role in enhancing circular bioeconomy and environmental sustainability. This review also details the life cycle assessment methodologies for the production and applications of biosurfactants. Finally, the current status and limitations of biosurfactant research are discussed and the potential areas are highlighted for future research and development. This review will be helpful in selecting the best available technology for biosynthesis and application of particular biosurfactant under specific conditions.


Subject(s)
COVID-19 , Surface-Active Agents , Humans , Surface-Active Agents/metabolism
8.
RSC Adv ; 12(23): 14917-14931, 2022 May 12.
Article in English | MEDLINE | ID: mdl-35702232

ABSTRACT

The present study describes the cloning, expression, purification and characterization of the xylosidase gene (1650 bp) from a thermophilic bacterium Clostridium clariflavum into E. coli BL21 (DE3) using the expression vector pET-21a(+) for utilization in biofuel production. The recombinant xylosidase enzyme was purified to homogeneity by heat treatment and immobilized metal ion affinity chromatography. SDS-PAGE determined that the molecular weight of purified xylosidase was 60 kDa. This purified recombinant xylosidase showed its maximum activity at a temperature of 37 °C and pH 6.0. The purified recombinant xylosidase enzyme remains stable up to 90 °C for 4 h and retained 54.6% relative activity as compared to the control. The presence of metal ions such as Ca2+ and Mg2+ showed a positive impact on xylosidase enzyme activity whereas Cu2+ and Hg2+ inhibit its activity. Organic solvents did not considerably affect the stability of the purified xylosidase enzyme while DMSO and SDS cause the inhibition of enzyme activity. Pretreatment experiments were run in triplicate for 72 h at 30 °C using 10% NaOH. Saccharification experiment was performed by using 1% substrate (pretreated plant biomass) in citrate phosphate buffer of pH 6.5 loaded with 150 U mL-1 of purified recombinant xylosidase enzyme along with ampicillin (10 µg mL-1). Subsequent incubation was carried out at 50 °C and 100 rpm in a shaking incubator for 24 h. Saccharification potential of the recombinant xylosidase enzyme was calculated against both pretreated and untreated sugarcane bagasse and wheat straw as 9.63% and 8.91% respectively. All these characteristics of the recombinant thermotolerant xylosidase enzyme recommended it as a potential candidate for biofuel industry.

9.
RSC Adv ; 12(11): 6463-6475, 2022 Feb 22.
Article in English | MEDLINE | ID: mdl-35424589

ABSTRACT

The ß-xylanase gene (DCE06_04615) with 1041 bp cloned from Thermotoga naphthophila was expressed into E. coli BL21 DE3. The cloned ß-xylanase was covalently bound to iron oxide magnetic nanoparticles coated with silica utilizing carbodiimide. The size of the immobilized MNPs (50 nm) and their binding with ß-xylanase were characterized by Fourier-transform electron microscopy (FTIR) (a change in shift particularly from C-O to C-N) and transmission electron microscopy (TEM) (spherical in shape and 50 nm in diameter). The results showed that enzyme activity (4.5 ± 0.23 U per mL), thermo-stability (90 °C after 4 hours, residual activity of enzyme calculated as 29.89% ± 0.72), pH stability (91% ± 1.91 at pH 7), metal ion stability (57% ± 1.08 increase with Ca2+), reusability (13 times) and storage stability (96 days storage at 4 °C) of the immobilized ß-xylanase was effective and superior. The immobilized ß-xylanase exhibited maximal enzyme activity at pH 7 and 90 °C. Repeated enzyme assay and saccharification of pretreated rice straw showed that the MNP-enzyme complex exhibited 56% ± 0.76 and 11% ± 0.56 residual activity after 8 times and 13 times repeated usage. The MNP-enzyme complex showed 17.32% and 15.52% saccharification percentage after 1st and 8th time usage respectively. Immobilized ß-xylanase exhibited 96% residual activity on 96 days' storage at 4 °C that showed excellent stability.

11.
Biotechnol Biofuels ; 14(1): 144, 2021 Jun 26.
Article in English | MEDLINE | ID: mdl-34174936

ABSTRACT

BACKGROUND: Identifying lignocellulose recalcitrant factors and exploring their genetic properties are essential for enhanced biomass enzymatic saccharification in bioenergy crops. Despite genetic modification of major wall polymers has been implemented for reduced recalcitrance in engineered crops, it could most cause a penalty of plant growth and biomass yield. Alternatively, it is increasingly considered to improve minor wall components, but an applicable approach is required for efficient assay of large population of biomass samples. Hence, this study collected total of 100 rice straw samples and characterized all minor wall monosaccharides and biomass enzymatic saccharification by integrating NIRS modeling and QTL profiling. RESULTS: By performing classic chemical analyses and establishing optimal NIRS equations, this study examined four minor wall monosaccharides and major wall polymers (acid-soluble lignin/ASL, acid-insoluble lignin/AIL, three lignin monomers, crystalline cellulose), which led to largely varied hexoses yields achieved from enzymatic hydrolyses after two alkali pretreatments were conducted with large population of rice straws. Correlation analyses indicated that mannose and galactose can play a contrast role for biomass enzymatic saccharification at P < 0.0 l level (n = 100). Meanwhile, we found that the QTLs controlling mannose, galactose, lignin-related traits, and biomass saccharification were co-located. By combining NIRS assay with QTLs maps, this study further interpreted that the mannose-rich hemicellulose may assist AIL disassociation for enhanced biomass enzymatic saccharification, whereas the galactose-rich polysaccharides should be effectively extracted with ASL from the alkali pretreatment for condensed AIL association with cellulose microfibrils. CONCLUSIONS: By integrating NIRS assay with QTL profiling for large population of rice straw samples, this study has identified that the mannose content of wall polysaccharides could positively affect biomass enzymatic saccharification, while the galactose had a significantly negative impact. It has also sorted out that two minor monosaccharides could distinctively associate with lignin deposition for wall network construction. Hence, this study demonstrates an applicable approach for fast assessments of minor lignocellulose recalcitrant factors and biomass enzymatic saccharification in rice, providing a potential strategy for bioenergy crop breeding and biomass processing.

12.
RSC Adv ; 11(16): 9246-9261, 2021 03 01.
Article in English | MEDLINE | ID: mdl-35423428

ABSTRACT

The present study describes the cloning of the cellobiohydrolase gene from a thermophilic bacterium Clostridium clariflavum and its expression in Escherichia coli BL21(DE3) utilizing the expression vector pET-21a(+). The optimization of various parameters (pH, temperature, isopropyl ß-d-1-thiogalactopyranoside (IPTG) concentration, time of induction) was carried out to obtain the maximum enzyme activity (2.78 ± 0.145 U ml-1) of recombinant enzyme. The maximum expression of recombinant cellobiohydrolase was obtained at pH 6.0 and 70 °C respectively. Enzyme purification was performed by heat treatment and immobilized metal anionic chromatography. The specific activity of the purified enzyme was 57.4 U mg-1 with 35.17% recovery and 3.90 purification fold. Sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE) showed that the molecular weight of cellobiohydrolase was 78 kDa. Among metal ions, Ca2+ showed a positive impact on the cellobiohydrolase enzyme with increased activity by 115%. Recombinant purified cellobiohydrolase enzyme remained stable and exhibited 77% and 63% residual activity in comparison to control in the presence of n-butanol and after incubation at 80 °C for 1 h, respectively. Our results indicate that our purified recombinant cellobiohydrolase can be used in the biofuel industry.

16.
Prep Biochem Biotechnol ; 50(10): 1063-1075, 2020.
Article in English | MEDLINE | ID: mdl-32594842

ABSTRACT

Synergistic saccharification ability of hemicellulases (endo-xylanase and ß-xylosidase) was evaluated in this study for the bioethanol production from plant biomass. Endo-xylanase and ß-xylosidase genes from Bacillus licheniformis were cloned and expressed in Escherichia coli BL21 (DE3). Maximum endo-xylanase production was obtained at 200 rpm agitation speed, air supply rate 2.0 vvm, 70% volume of the medium, 20% dissolved oxygen level and with 3% inoculum size. The optimal conditions for maximum production of recombinant ß-xylosidase enzyme at pilot scale were 200 rpm agitation speed, 25% dissolved oxygen level, 2.5 vvm aeration rate, 70% volume of the medium with 2% inoculum size. Furthermore, the saccharification potential of these recombinant enzymes was checked for the production of xylose sugar by bioconversion of plant biomass by optimizing individually as well as synergistically by optimizing various parameters. Maximum saccharification (93%) of plant biomass was observed when both enzymes were used at a time with 8% sugarcane bagasse as a substrate and 200 units of each enzyme after incubation of 6 hr at 50 °C and 120 rpm. The results obtained in this study suggested these recombinant hemicellulases as potential candidates for the conversion of complex agricultural residues into simple sugars for ultimate use in the biofuel industry.


Subject(s)
Bacillus licheniformis/genetics , Bacterial Proteins/genetics , Escherichia coli/genetics , Glycoside Hydrolases/genetics , Bacillus licheniformis/metabolism , Bacterial Proteins/metabolism , Cloning, Molecular , Endo-1,4-beta Xylanases/genetics , Endo-1,4-beta Xylanases/metabolism , Escherichia coli/metabolism , Genes, Bacterial , Glycoside Hydrolases/metabolism , Industrial Microbiology , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Xylosidases/genetics , Xylosidases/metabolism
17.
Methods Mol Biol ; 1980: 153-172, 2020.
Article in English | MEDLINE | ID: mdl-30666564

ABSTRACT

Microalgae are considered as promising cell factories for the production of various types of biofuels, including bioethanol, biodiesel, and biohydrogen by using carbon dioxide and sunlight. In spite of unique advantages of these microorganisms, the commercialization of microalgal biofuels has been hindered by poor economic features. Metabolic engineering is among the most promising strategies put forth to overcome this challenge. In this chapter, metabolic pathways involved in lipid and hydrogen production by microalgae are reviewed and discussed. Moreover, metabolic and genetic engineering approaches investigated for improving the rate of lipid (as a feedstock for biodiesel production) and biohydrogen synthesis are presented. Finally, genetic engineering tools and approaches employed for engineering microalgal metabolic pathways are elaborated. A thorough step-by-step protocol for reconstructing the metabolic pathway of various microorganisms including microalgae is also presented.


Subject(s)
Biofuels , Industrial Microbiology , Metabolic Engineering , Microalgae/metabolism , Fermentation , Genetic Engineering , Hydrogen/metabolism , Industrial Microbiology/methods , Metabolic Engineering/methods , Metabolic Networks and Pathways
18.
Appl Biochem Biotechnol ; 189(4): 1274-1290, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31240547

ABSTRACT

The gene of a ß-xylanase (Tnap_0700) was cloned from a hyperthermophilic Thermotoga naphthophila strain ATCC BAA-489 and expressed in Escherichia coli BL21 (DE3) via pET-21a (+) as an expression vector. The growth steps were upgraded for highest ß-xylanase expression via several factors, for example, IPTG concentration, time of induction, pH, and temperature. The pH and temperature optima for the extreme expression of ß-xylanase were 7.0 pH and 37 °C, correspondingly. Recombinant enzyme purified by heat treatment process, then later by immobilized metal ion affinity chromatography. Molecular mass of the purified ß-xylanase was 38 kDa observed by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). The enzyme was stable at room temperature for 30 days. It exhibited high stability over wide series of temperature 50-90 °C and pH 4.0-9.0 upon the addition of 1 mM Ca+2 and reduced in the existence of Cu+2 and EDTA. The addition of about 10-30% different organic solvents have no considerable effect on enzyme. However, SDSF and urea acting as an inhibitor leads to decrease in the enzyme activity. The ß-xylanase enzyme was active to hydrolyze xylan from beechwood forming xylose. Thermostable ß-xylanase causes the breakdown of complex carbohydrates into monosaccharide components. This thermostable ß-xylanase revealed remarkable properties, which make it an encouraging candidate for various industrial applications especially in the alteration of renewable biomaterials into ethanol production, and biofuels from lignocellulosics has acknowledged much devotion subsequently in the last decade.


Subject(s)
Bacteria , Cloning, Molecular , Endo-1,4-beta Xylanases/chemistry , Xylans/chemistry , Bacteria/enzymology , Bacteria/genetics , Endo-1,4-beta Xylanases/biosynthesis , Endo-1,4-beta Xylanases/genetics , Endo-1,4-beta Xylanases/isolation & purification , Enzyme Stability , Hydrogen-Ion Concentration , Recombinant Proteins/biosynthesis , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/isolation & purification , Temperature , Thermotoga , Xylose/chemistry
19.
RSC Adv ; 9(2): 984-992, 2019 Jan 02.
Article in English | MEDLINE | ID: mdl-35517638

ABSTRACT

In this study, the industrial applications of a highly thermostable α-amylase as a desizer in the textile industry was evaluated. The cloned gene was expressed in different media (ZBM, LB, ZYBM9, and ZB) with IPTG (isopropyl ß-d-1-thiogalactopyranoside) used as an inducer. Lactose was also used as an alternate inducer for the T7 promoter system in E. coli. For the large-scale production of the enzyme, different parameters were optimized. The maximum enzyme production was achieved when the volume of medium was 70% of the total volume of fermenter with a 2.0 vvm air supply and 20% dissolved oxygen at a 200 rpm agitation rate. Under all the optimized conditions, the maximum enzyme production was 22.08 U ml-1 min-1 with lactose (200 mM) as an inducer in ZBM medium. The desizing potential of the purified α-amylase enzyme was calculated with different enzyme concentrations (50-300 U ml-1) at different temperatures (50-100 °C), and pHs (4-9) with varying time intervals (30-120 min). The highest desizing activity was found when 150 U ml-1 enzyme units were utilized at 85 °C and at 6.5 pH for 1 h.

20.
Pak J Pharm Sci ; 31(6 (Supplementary): 2755-2762, 2018 Nov.
Article in English | MEDLINE | ID: mdl-30587491

ABSTRACT

Present research work is aimed to purify and characterize a recombinant ß-xylosidase enzyme which was previously cloned from Bacillus licheniformis ATCC 14580 in to Escherichia coli BL21. Purification of recombinant enzyme was carried out by using ammonium sulphate precipitation method followed by single step immobilized metal ion affinity chromatography. Specific activity of purified recombinant ß-xylosidase enzyme was 20.78 Umg-1 with 2.58 purification fold and 33.75% recovery. SDS-PAGE was used to determine the molecular weight of recombinant purified ß-xylosidase and it was recorded as 52 kDa. Purified enzyme showed stability upto 90°C within a pH range of 3-8 with and optimal temperature and pH, 55ºC and 7.0, respectively. The enzyme activity was not considerably affected in the presence of EDTA. An increase in the enzyme activity was found in the manifestation of Mg+2. Enzyme activity was also increased by 6%, 18% and 22% in the presence of 1% Tween 80, ß-mercaptoethanol and DTT, respectively. Higher concentrations (10 - 40%) of organic solvents did not show any effect upon activity of enzyme. All these characteristics of the recombinant enzyme endorsed it as a potential candidate for biofuel industry.


Subject(s)
Bacillus licheniformis/enzymology , Bacillus licheniformis/isolation & purification , Escherichia coli/enzymology , Xylosidases/isolation & purification , Xylosidases/metabolism , Recombinant Proteins/isolation & purification , Recombinant Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...