Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 31
Filter
1.
Viruses ; 16(3)2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38543834

ABSTRACT

The African horse sickness virus (AHSV) belongs to the Genus Orbivirus, family Sedoreoviridae, and nine serotypes of the virus have been described to date. The AHSV genome is composed of ten linear segments of double-stranded (ds) RNA, numbered in decreasing size order (Seg-1 to Seg-10). Genome segment 2 (Seg-2) encodes outer-capsid protein VP2, the most variable AHSV protein and the primary target for neutralizing antibodies. Consequently, Seg-2 determines the identity of the virus serotype. An African horse sickness (AHS) outbreak in an AHS-free status country requires identifying the serotype as soon as possible to implement a serotype-specific vaccination program. Considering that nowadays 'polyvalent live attenuated' is the only commercially available vaccination strategy to control the disease, field and vaccine strains of different serotypes could co-circulate. Additionally, in AHS-endemic countries, more than one serotype is often circulating at the same time. Therefore, a strategy to rapidly determine the virus serotype in an AHS-positive sample is strongly recommended in both epidemiological situations. The main objective of this study is to describe the development and validation of three triplex real-time RT-PCR (rRT-PCR) methods for rapid AHSV serotype detection. Samples from recent AHS outbreaks in Kenia (2015-2017), Thailand (2020), and Nigeria (2023), and from the AHS outbreak in Spain (1987-1990), were included in the study for the validation of these methods.


Subject(s)
African Horse Sickness Virus , African Horse Sickness , Orbivirus , Viral Vaccines , Animals , Horses , Reverse Transcriptase Polymerase Chain Reaction , African Horse Sickness/diagnosis , African Horse Sickness/epidemiology , African Horse Sickness/prevention & control , Orbivirus/genetics , Antibodies, Neutralizing
2.
Viruses ; 15(12)2023 Dec 01.
Article in English | MEDLINE | ID: mdl-38140614

ABSTRACT

West Nile Virus (WNV) is a mosquito vector-borne zoonosis with an increasing incidence in Europe that has become a public health concern. In Spain, although local circulation has been known for decades, until 2020, when a large outbreak occurred, West Nile Virus cases were scarce and mostly occurred in southern Spain. Since then, there have been new cases every year and the pathogen has spread to new regions. Thus, monitoring of circulating variants and lineages plays a fundamental role in understanding WNV evolution, spread and dynamics. In this study, we sequenced WNV consensus genomes from mosquito pools captured in 2022 as part of a newly implemented surveillance program in southern Spain and compared it to other European, African and Spanish sequences. Characterization of WNV genomes in mosquitoes captured in 2022 reveals the co-circulation of two WNV lineage 1 variants, the one that caused the outbreak in 2020 and another variant that is closely related to variants reported in Spain in 2012, France in 2015, Italy in 2021-2022 and Senegal in 2012-2018. The geographic distribution of these variants indicates that WNV L1 dynamics in southern Europe include an alternating dominance of variants in some territories.


Subject(s)
Culicidae , West Nile Fever , West Nile virus , Animals , Humans , West Nile virus/genetics , West Nile Fever/epidemiology , Spain/epidemiology , Europe/epidemiology
4.
Euro Surveill ; 28(3)2023 01.
Article in English | MEDLINE | ID: mdl-36695488

ABSTRACT

In October 2022, an outbreak in Europe of highly pathogenic avian influenza (HPAI) A(H5N1) in intensively farmed minks occurred in northwest Spain. A single mink farm hosting more than 50,000 minks was involved. The identified viruses belong to clade 2.3.4.4b, which is responsible of the ongoing epizootic in Europe. An uncommon mutation (T271A) in the PB2 gene with potential public health implications was found. Our investigations indicate onward mink transmission of the virus may have occurred in the affected farm.


Subject(s)
Influenza A Virus, H5N1 Subtype , Influenza A virus , Influenza in Birds , Influenza, Human , Humans , Animals , Influenza in Birds/epidemiology , Mink , Influenza A Virus, H5N1 Subtype/genetics , Spain/epidemiology , Farms , Influenza, Human/epidemiology , Phylogeny
5.
Viruses ; 14(7)2022 07 15.
Article in English | MEDLINE | ID: mdl-35891525

ABSTRACT

This study described the clinical, virological, and serological responses of immunologically naïve and vaccinated horses to African horse sickness virus (AHSV) serotype 9. Naïve horses developed a clinical picture resembling the cardiac form of African horse sickness. This was characterized by inappetence, reduced activity, and hyperthermia leading to lethargy and immobility-recumbency by days 9-10 post-infection, an end-point criteria for euthanasia. After challenge, unvaccinated horses were viremic from days 3 or 4 post-infection till euthanasia, as detected by serogroup-specific (GS) real time RT-PCR (rRT-PCR) and virus isolation. Virus isolation, antigen ELISA, and GS-rRT-PCR also demonstrated high sensitivity in the post-mortem detection of the pathogen. After infection, serogroup-specific VP7 antibodies were undetectable by blocking ELISA (b-ELISA) in 2 out of 3 unvaccinated horses during the course of the disease (9-10 dpi). Vaccinated horses did not show significant side effects post-vaccination and were largely asymptomatic after the AHSV-9 challenge. VP7-specific antibodies could not be detected by the b-ELISA until day 21 and day 30 post-inoculation, respectively. Virus neutralizing antibody titres were low or even undetectable for specific serotypes in the vaccinated horses. Virus isolation and GS-rRT-PCR detected the presence of AHSV vaccine strains genomes and infectious vaccine virus after vaccination and challenge. This study established an experimental infection model of AHSV-9 in horses and characterized the main clinical, virological, and immunological parameters in both immunologically naïve and vaccinated horses using standardized bio-assays.


Subject(s)
African Horse Sickness Virus , African Horse Sickness , Viral Vaccines , African Horse Sickness/prevention & control , Animals , Antibodies, Viral , Horses , Serogroup
6.
Porcine Health Manag ; 8(1): 12, 2022 Mar 17.
Article in English | MEDLINE | ID: mdl-35300732

ABSTRACT

BACKGROUND: Resistance to colistin was an uncommon phenomenon traditionally linked to chromosome point mutations, but since the first description of a plasmid-mediated colistin-resistance in late 2015, transmissible resistance to colistin has become a Public Health concern. Despite colistin is considered as a human last resort antibiotic, it has been commonly used in swine industry to treat post-weaning diarrhoea in piglets. However, the progressively increase of colistin resistance during the last decade led to the Spanish Medicines and Healthcare Products Agency (AEMPS) to launch a strategic and voluntary plan aimed to reduce colistin consumption in pig production. Our longitudinal study (1998-2021) aimed to evaluate the trend of colistin resistance mediated through the mcr-1 mobile gene in Spanish food-producing pig population and compare it with published polymyxin sales data in veterinary medicine to assess their possible relationships. RESULTS: The first mcr-1 positive sample was observed in 2004, as all samples from 1998 and 2002 were mcr-1 PCR-negative. We observed a progressive increase of positive samples from 2004 to 2015, when mcr-1 detection reached its maximum peak (33/50; 66%). From 2017 (27/50; 54%) to 2021 (14/81; 17%) the trend became downward, reaching percentages significantly lower than the 2015 peak (p < 0.001). The abundance of mcr-1 gene in PCR-positive samples showed a similar trend reaching the highest levels in 2015 (median: 6.6 × 104 mcr-1 copies/mg of faeces), but decreased significantly from 2017 to 2019 (median 2.7 × 104, 1.2 × 103, 4.6 × 102 mcr-1 copies/mg of faeces for 2017, 2018 and 2019, respectively), and stabilizing in 2021 (1.6 × 102 mcr-1 copies/mg of faeces) with similar values than 2019. CONCLUSIONS: Our study showed the decreasing trend of colistin resistance associated to mcr-1 gene, after a previous increase from among 2004-2015, since the European Medicines Agency and AEMPS strategies were applied in 2016 to reduce colistin use in animals, suggesting a connection between polymyxin use and colistin resistance. Thus, these plans could have been effective in mcr-1 reduction, reaching lower levels than those detected in samples collected 17 years ago, when resistance to colistin was not yet a major concern.

7.
Microb Genom ; 8(3)2022 03.
Article in English | MEDLINE | ID: mdl-35259085

ABSTRACT

Salmonella Kentucky is commonly found in poultry and rarely associated with human disease. However, a multidrug-resistant (MDR) S. Kentucky clone [sequence type (ST)198] has been increasingly reported globally in humans and animals. Our aim here was to assess if the recently reported increase of S. Kentucky in poultry in Spain was associated with the ST198 clone and to characterize this MDR clone and its distribution in Spain. Sixty-six isolates retrieved from turkey, laying hen and broiler in 2011-2017 were subjected to whole-genome sequencing to assess their sequence type, genetic relatedness, and presence of antimicrobial resistance genes (ARGs), plasmid replicons and virulence factors. Thirteen strains were further analysed using long-read sequencing technologies to characterize the genetic background associated with ARGs. All isolates belonged to the ST198 clone and were grouped in three clades associated with the presence of a specific point mutation in the gyrA gene, their geographical origin and isolation year. All strains carried between one and 16 ARGs whose presence correlated with the resistance phenotype to between two and eight antimicrobials. The ARGs were located in the Salmonella genomic island (SGI-1) and in some cases (blaSHV-12, catA1, cmlA1, dfrA and multiple aminoglycoside-resistance genes) in IncHI2/IncI1 plasmids, some of which were consistently detected in different years/farms in certain regions, suggesting they could persist over time. Our results indicate that the MDR S. Kentucky ST198 is present in all investigated poultry hosts in Spain, and that certain strains also carry additional plasmid-mediated ARGs, thus increasing its potential public health significance.


Subject(s)
Poultry , Salmonella enterica , Animals , Anti-Bacterial Agents/pharmacology , Chickens , Drug Resistance, Multiple, Bacterial/genetics , Female , Genomics , Kentucky , Salmonella/genetics , Salmonella enterica/genetics , Serogroup , Spain/epidemiology
8.
Transbound Emerg Dis ; 69(5): 3121-3127, 2022 Sep.
Article in English | MEDLINE | ID: mdl-34812592

ABSTRACT

West Nile Virus (WNV; family Flaviviridae, genus flavivirus) is a zoonotic arbovirus worldwide spread. Its genetic diversity has allowed the definition of at least seven lineages, being lineages 1 and 2 the most widely distributed. Western Mediterranean region has been affected by WNV since decades. In Spain, WNV is actively circulating, provoking annual outbreaks in birds, horses and lately in humans. Lineage 1 is responsible for outbreaks that occurred in central and southern regions, while lineage 2 has been recently described in wild birds in north-eastern part of the country. During 2017 season, a disease outbreak in captive raptors was reported in southern Spain and WNV was isolated from a dead northern goshawk. Full genome sequencing was followed by phylogenetic analyses and analyses of the amino acidic substitutions. This strain, named Spain/2017/NG-b, highly differs from those which have been circulating both in Spain and in the neighbouring Mediterranean countries, constituting a new distinct group, tentatively classified in a newly defined cluster 7 within the WNV clade 1a, supporting a new, independent introduction of the virus in the Western Mediterranean region from an unknown origin. Besides, circumstantial evidence indicates that this emerging WNV strain could be behind the subsequent outbreak occurred nearby in horses. Overall, the reinforcement of surveillance programs, especially in wild birds, is essential to early detect the circulation of WNV and other related flaviviruses that could cause outbreaks in wild or domestic birds, equine and human populations.


Subject(s)
Flavivirus , Horse Diseases , West Nile Fever , West Nile virus , Animals , Animals, Wild , Birds , Horse Diseases/epidemiology , Horses , Humans , Phylogeny , Spain/epidemiology , West Nile Fever/epidemiology , West Nile Fever/veterinary
9.
Transbound Emerg Dis ; 68(3): 1275-1282, 2021 May.
Article in English | MEDLINE | ID: mdl-32786107

ABSTRACT

Myxomatosis is an infectious disease caused by the myxoma virus (MYXV), which has very high mortality rates in European wild rabbits (Oryctolagus cuniculus). While sporadic cases of myxomatosis have also been reported in some hare species, these lagomorphs are considered to have a low susceptibility to MYXV infection. In the present study, we describe the spatiotemporal evolution and main epidemiological findings of novel hare MYXV (ha-MYXV or MYXV-Tol) epidemics in Iberian hares (Lepus granatensis) in Spain. In the period 2018-2020, a total of 487 hares from 372 affected areas were confirmed to be MYXV-infected by PCR. ha-MYXV outbreaks were detected in most of the Spanish regions where the Iberian hare is present. The spatial distribution was not homogeneous, with most outbreaks concentrated in the southern and central parts of Spain. Consecutive outbreaks reported in the last two years suggest endemic circulation in Spain of this emerging virus. A retrospective study carried out just after the first epidemic period (2018-2019) revealed that the virus could have been circulating since June 2018. The number of outbreaks started to rise in July, peaked during the first half of August and October and then decreased sharply until January 2019. The apparent mean mortality rate was 55.4% (median: 70%). The results indicated high susceptibility of the Iberian hare to ha-MYXV infection, but apparent resistance in the sympatric hare species present in Spain and less infectivity in European rabbits. The novel ha-MYXV has had significant consequences on the health status of Iberian hare populations in Spain, which is of animal health and conservation concern. The present study contributes to a better understanding of ha-MYXV emergence and will provide valuable information for the development of control strategies. Further research is warranted to assess the impact of this emerging virus on wild lagomorph populations and to elucidate its ecological implications for Iberian Mediterranean ecosystems.


Subject(s)
Epidemics/veterinary , Epidemiological Monitoring/veterinary , Hares , Myxoma virus/isolation & purification , Poxviridae Infections/veterinary , Tumor Virus Infections/veterinary , Animals , Female , Male , Poxviridae Infections/epidemiology , Poxviridae Infections/virology , Retrospective Studies , Spain/epidemiology , Tumor Virus Infections/epidemiology , Tumor Virus Infections/virology
10.
Transbound Emerg Dis ; 68(2): 458-466, 2021 Mar.
Article in English | MEDLINE | ID: mdl-32573968

ABSTRACT

Between early October and mid-December 2018, mortalities were detected in Iberian ibex (Capra pyrenaica) populations in southern Spain. In the same region and period, bluetongue virus (BTV) circulation was also reported in sentinel and clinically affected domestic ruminant herds. Molecular analyses confirmed BTV serotype 4 (BTV-4) infection in eight Iberian ibexes from six hunting areas, and in 46 domestic ruminants from seven herds in close proximity to affected hunting estates. Histopathological analyses revealed vascular changes in several organs, pneumonia, lymphoid depletion, inflammatory mononuclear cell infiltrate and fibrosis as the most frequently observed lesions in the affected Iberian ibexes. Epidemiological and laboratory results indicate that BTV-4 was the main aetiological agent involved in outbreaks detected in Iberian ibex populations during the study period. Sequence analyses indicated that the BTV-4 strain detected in Iberian ibex had high homology (99.4%-100%) with strains isolated in livestock during the same period, and with previous isolates (≥98.9%) from Spain and Mediterranean Basin countries. Further studies are warranted to determine the impact of BTV-4 on the health status of Iberian ibex populations after the outbreaks. The inclusion of this species in the surveillance programme may be useful for early detection of BTV, especially in epidemiological scenarios at the wildlife-livestock interface.


Subject(s)
Animals, Wild/virology , Bluetongue virus/isolation & purification , Bluetongue/epidemiology , Ruminants/virology , Animals , Bluetongue/virology , Disease Outbreaks , Livestock , Serogroup , Spain/epidemiology
11.
Transbound Emerg Dis ; 66(6): 2218-2226, 2019 Nov.
Article in English | MEDLINE | ID: mdl-31322320

ABSTRACT

The study of myxoma virus (MYXV) infections in the European rabbit (Oryctolagus cuniculus) has produced one of the most accepted host-pathogen evolutionary models. To date, myxomatosis has been limited to the European rabbit with sporadic reports in hares. However, reports of widespread mortalities in the Iberian hare (Lepus granatensis) with myxomatosis-like clinical signs indicate a potential species jump has occurred. The presence of MYXV DNA was confirmed by PCR in 244 samples received from regional veterinary services, animal health laboratories, hunters or rangers over a 5-month period. PCR analysis of 4 MYXV positive hare samples revealed a 2.8 kb insertion located within the M009 gene with respect to MYXV. The presence of this insertion was subsequently confirmed in 20 samples from 18 Spanish provinces. Sanger sequencing and subsequent analysis show that the insert contained 4 ORFs which are phylogenetically related to MYXV genes M060, M061, M064 and M065. The complete MYXV genome from hare tissue was sequenced using Ion torrent next-generation technology and a summary of the data presented here. With the exception of the inserted region, the virus genome had no large scale modifications and 110 mutations with respect to the MYXV reference strain Lausanne were observed. The next phase in the evolution of MYXV has taken place as a host species jump from the European rabbit to the Iberian hare an occurrence which could have important effects on this naïve population.


Subject(s)
Hares/virology , Myxoma virus/genetics , Poxviridae Infections/virology , Animals , DNA, Viral/genetics , Genome, Viral , Mutagenesis, Insertional , Phylogeny , Polymerase Chain Reaction , Poxviridae Infections/veterinary , Rabbits , Spain , Whole Genome Sequencing
12.
Transbound Emerg Dis ; 66(6): 2204-2208, 2019 Nov.
Article in English | MEDLINE | ID: mdl-31293076

ABSTRACT

Myxomatosis is an infectious disease caused by myxoma virus (MYXV; genus Leporipoxvirus), which affects the European wild rabbit (Oryctolagus cuniculus) and sporadically brown hares (Lepus europaeus). Here, we describe the first outbreak of myxomatosis in Iberian hares (Lepus granatensis). Between mid-July and the end of September 2018, around 530 dead animals were detected in Iberian hare populations in southern Spain. The apparent mean mortality rate was 56.7%, and the estimated mean case fatality rate was 69.2%. Histopathological and molecular results confirmed MYXV infections in all hares analysed. To the authors' knowledge, this is the first myxomatosis outbreak causing a high mortality in hares and the first detailed characterization of a myxomatosis outbreak in the Iberian hare. The absence of cases in sympatric wild rabbits suggests differences in the susceptibility between both lagomorph species to the virus strain implicated in the outbreak. After the first case, the number of affected areas increased sharply affecting most of the Iberian Peninsula where the Iberian hare is present. Further studies are required to elucidate the origin of the implicated MYXV strain as well as to assess the impact of this outbreak on the Iberian hare populations.


Subject(s)
Disease Outbreaks/veterinary , Hares/virology , Poxviridae Infections/epidemiology , Poxviridae Infections/veterinary , Animals , Epidermis/pathology , Epidermis/virology , Lung/pathology , Lung/virology , Myxoma virus , Rabbits , Spain/epidemiology
13.
Transbound Emerg Dis ; 66(1): 83-90, 2019 Jan.
Article in English | MEDLINE | ID: mdl-30070433

ABSTRACT

The laboratory diagnosis of African horse sickness (AHS) is important for: (a) demonstrating freedom from infection in a population, animals or products for trade (b) assessing the efficiency of eradication policies; (c) laboratory confirmation of clinical diagnosis; (d) estimating the prevalence of AHS infection; and (e) assessing postvaccination immune status of individual animals or populations. Although serological techniques play a secondary role in the confirmation of clinical cases, their use is very important for all the other purposes due to their high throughput, ease of use and good cost-benefit ratio. The main objective of this study was to support the validation of AHS VP7 Blocking ELISA up to the Stage 3 of the World Animal Health Organization (OIE) assay validation pathway. To achieve this, a collaborative ring trial, which included all OIE Reference Laboratories and other AHS-specialist diagnostic centres, was conducted in order to assess the diagnostic performance characteristics of the VP7 Blocking ELISA. In this trial, a panel of sera of different epidemiological origin and infection status was used. Through this comprehensive evaluation we can conclude that the VP7 Blocking ELISA satisfies the OIE requirements of reproducibility. The VP7 Blocking ELISA, in its commercial version is ready to enter Stage 4 of the validation pathway (Programme Implementation). Specifically, this will require testing the diagnostic performance of the assay using contemporary serum samples collected during control campaigns in endemic countries.


Subject(s)
African Horse Sickness Virus/isolation & purification , African Horse Sickness/diagnosis , Diagnostic Tests, Routine/veterinary , Enzyme-Linked Immunosorbent Assay/veterinary , Horse Diseases/diagnosis , Animals , Antigens, Viral/blood , Diagnostic Tests, Routine/methods , Enzyme-Linked Immunosorbent Assay/methods , Horses , Reproducibility of Results , Viral Core Proteins/blood
14.
PLoS One ; 9(12): e115815, 2014.
Article in English | MEDLINE | ID: mdl-25542013

ABSTRACT

Swine influenza causes concern for global veterinary and public health officials. In continuing two previous networks that initiated the surveillance of swine influenza viruses (SIVs) circulating in European pigs between 2001 and 2008, a third European Surveillance Network for Influenza in Pigs (ESNIP3, 2010-2013) aimed to expand widely the knowledge of the epidemiology of European SIVs. ESNIP3 stimulated programs of harmonized SIV surveillance in European countries and supported the coordination of appropriate diagnostic tools and subtyping methods. Thus, an extensive virological monitoring, mainly conducted through passive surveillance programs, resulted in the examination of more than 9 000 herds in 17 countries. Influenza A viruses were detected in 31% of herds examined from which 1887 viruses were preliminary characterized. The dominating subtypes were the three European enzootic SIVs: avian-like swine H1N1 (53.6%), human-like reassortant swine H1N2 (13%) and human-like reassortant swine H3N2 (9.1%), as well as pandemic A/H1N1 2009 (H1N1pdm) virus (10.3%). Viruses from these four lineages co-circulated in several countries but with very different relative levels of incidence. For instance, the H3N2 subtype was not detected at all in some geographic areas whereas it was still prevalent in other parts of Europe. Interestingly, H3N2-free areas were those that exhibited highest frequencies of circulating H1N2 viruses. H1N1pdm viruses were isolated at an increasing incidence in some countries from 2010 to 2013, indicating that this subtype has become established in the European pig population. Finally, 13.9% of the viruses represented reassortants between these four lineages, especially between previous enzootic SIVs and H1N1pdm. These novel viruses were detected at the same time in several countries, with increasing prevalence. Some of them might become established in pig herds, causing implications for zoonotic infections.


Subject(s)
Epidemiological Monitoring/veterinary , Orthomyxoviridae Infections/veterinary , Swine Diseases/diagnosis , Swine Diseases/epidemiology , Swine/virology , Animals , Antigens, Viral/immunology , Europe , Influenza A virus/classification , Influenza A virus/immunology , Influenza A virus/isolation & purification , Influenza A virus/physiology , Orthomyxoviridae Infections/diagnosis , Orthomyxoviridae Infections/epidemiology , Orthomyxoviridae Infections/virology , Swine Diseases/virology
15.
J Virol Methods ; 196: 71-81, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24184949

ABSTRACT

Sixteen haemagglutinin (HA) subtypes of avian influenza viruses (AIV) have been described to date. Rapid subtype identification of any AIV is of major interest because of the possible serious consequences for the poultry industry and even public health. Molecular techniques currently allow immediate accurate subtype characterisation prior to virus isolation. In this study, a set of fourteen specific real-time RT-PCR methods were developed and evaluated for AIV HA subtyping (H1-H4, H6-H8, H10-H16), H5 and H9 being excluded on the basis of the current validity of the European Union (EU) recommended specific assays. Specific primers and probes sets for each HA-subtype were designed to hybridise the largest isolates range within each single subtype, considering the Eurasian lineage as a major target. The robustness and general application of the 14 HA-subtype methods were verified by the analysis of 110 AIV isolates belonging to all 16 HA-subtypes, performed in different laboratories. The developed real-time RT-PCR assays proved to be highly specific and revealed suitable sensitivity, allowing direct HA-subtyping of clinical material. In summary, this study provides for the first time a panel of molecular tests using specific hydrolysis probes for rapid and complete AIV HA-subtype identification.


Subject(s)
Hemagglutinin Glycoproteins, Influenza Virus/genetics , Influenza A virus/classification , Influenza A virus/isolation & purification , Influenza in Birds/virology , Real-Time Polymerase Chain Reaction/methods , Reverse Transcriptase Polymerase Chain Reaction/methods , Virology/methods , Animals , DNA Primers/genetics , European Union , Influenza A virus/genetics , Oligonucleotide Probes/genetics , Poultry , Sensitivity and Specificity
16.
J Virol Methods ; 189(2): 321-7, 2013 May.
Article in English | MEDLINE | ID: mdl-23499258

ABSTRACT

An increase in activity of two mosquito-borne flaviviruses, West Nile virus (WNV) and Usutu virus (USUV), has been reported in Europe in recent years. The current epidemiological situation calls for RT-PCR methods that are able to detect not only the widespread lineage 1 (L1) WNV, but also lineage 2 (L2) WNV. In addition, the presence in Europe of the closely related USUV requires methods that can identify these three flaviviruses and permit an efficient and accurate differential diagnosis. Here we describe a new one-step real-time multiplex RT-PCR that detects and differentiates efficiently WNV-L1, WNV-L2 and USUV in a single reaction. The assay is based on different sets of primers and fluorogenic probes specific to each virus that are labelled with selective, non-overlapping fluorogen-quencher pairs. This enables the fluorescence emitted by each probe, characterized by distinct wavelengths, to be differentiated. This multiplex assay was very sensitive to all of the target viruses; in addition, there were no cross-reactions between the viruses and the assay did not react to any other phylogenetically or symptomatically related viruses. Quantitation was enabled through the use of in vitro-transcribed RNAs developed specifically for each virus as copy number standards. This new assay was validated using different types of experimental and field samples.


Subject(s)
Molecular Diagnostic Techniques/methods , Multiplex Polymerase Chain Reaction/methods , Real-Time Polymerase Chain Reaction/methods , Virology/methods , West Nile Fever/veterinary , West Nile virus/classification , West Nile virus/isolation & purification , Animals , Bird Diseases/diagnosis , Bird Diseases/virology , DNA Primers/genetics , Europe , Fluorescence , Oligonucleotide Probes/genetics , Sensitivity and Specificity , West Nile Fever/diagnosis , West Nile Fever/virology , West Nile virus/genetics
17.
J Vet Diagn Invest ; 24(5): 959-63, 2012 Sep.
Article in English | MEDLINE | ID: mdl-22807508

ABSTRACT

In September 2010, an outbreak of disease in 2 wild bird species (red-legged partridge, Alectoris rufa; ring-necked pheasant, Phasianus colchicus) occurred in southern Spain. Bagaza virus (BAGV) was identified as the etiological agent of the outbreak. BAGV had only been reported before in Western Africa (Central African Republic, Senegal) and in India. The first occurrence of BAGV in Spain stimulated a demand for rapid, reliable, and efficacious diagnostic methods to facilitate the surveillance of this disease in the field. This report describes a real-time reverse transcription polymerase chain reaction (RT-PCR) method based on a commercial 5'-Taq nuclease-3' minor groove binder DNA probe and primers targeting the Bagaza NS5 gene. The method allowed the detection of BAGV with a high sensitivity, whereas other closely related flaviviruses (Usutu virus, West Nile virus, and Japanese encephalitis virus) were not detected. The assay was evaluated using field samples of red-legged partridges dead during the outbreak (n = 11), as well as samples collected from partridges during surveillance programs (n = 81). The results were compared to those obtained with a pan-flaviviral hemi-nested RT-PCR followed by nucleotide sequencing, which was employed originally to identify the virus involved in the outbreak. The results obtained with both techniques were 100% matching, indicating that the newly developed real-time RT-PCR is a valid technique for BAGV genome detection, useful in both diagnosis and surveillance studies.


Subject(s)
Bird Diseases/virology , Flavivirus/classification , Flavivirus/isolation & purification , Galliformes , Real-Time Polymerase Chain Reaction/veterinary , Reverse Transcriptase Polymerase Chain Reaction/veterinary , Animals , Bird Diseases/epidemiology , Disease Outbreaks/veterinary , Flavivirus Infections/epidemiology , Flavivirus Infections/veterinary , Flavivirus Infections/virology , RNA, Viral , Real-Time Polymerase Chain Reaction/methods , Sensitivity and Specificity , Spain/epidemiology
18.
Infect Genet Evol ; 11(8): 2144-50, 2011 Dec.
Article in English | MEDLINE | ID: mdl-21983686

ABSTRACT

Porcine teschoviruses (PTVs) have been previously shown to be the most abundant cytopathic viruses found in swine feces. In the present study, the diversity of PTVs was studied, using PTV isolates collected between 2004 and 2009 in a wide territory in Spain. In order to characterize genetically the isolates, phylogeny reconstructions were made using maximum likelihood and Bayesian inference methods, based on the 1D (VP1) gene, and including sequences available in public databases. The phylogenetic trees obtained indicated that PTVs present 12 main lineages, 11 corresponding to the PTV serotypes described to date, and one lineage distinct from the rest. The geographic distribution of the different lineages does not seem to be strongly associated to particular territories, and co-circulation of multiple lineages was found in the same geographic areas. Nevertheless, some spatial structuring of the viral populations studied is indicated by the differences found between Spanish samples with respect to other European countries. A coalescent-based approach indicated that mutation may have been the main factor in originating the genetic diversity observed in the VP1 gene region. This study revealed a high diversity of teschoviruses circulating in the pig populations studied, and showed that molecular analysis of the complete VP1 protein is a suitable method for the identification of members of the porcine teschovirus group. However, further analyses are needed to clarify the geographical structuring of the different PTV populations.


Subject(s)
Capsid Proteins/genetics , Genetic Variation , Sus scrofa/virology , Teschovirus/genetics , Animals , Base Sequence , Bayes Theorem , Biological Evolution , Cell Line , Feces/virology , Molecular Sequence Data , Phylogeny , Sequence Alignment , Sequence Analysis, RNA , Spain , Teschovirus/classification
19.
Emerg Infect Dis ; 17(8): 1498-501, 2011 Aug.
Article in English | MEDLINE | ID: mdl-21801633

ABSTRACT

In September 2010, an unusually high number of wild birds (partridges and pheasants) died in Cádiz in southwestern Spain. Reverse transcription PCR and virus isolation detected flavivirus infections. Complete nucleotide sequence analysis identified Bagaza virus, a flavivirus with a known distribution that includes sub-Saharan Africa and India, as the causative agent.


Subject(s)
Animals, Wild/virology , Bird Diseases/epidemiology , Flavivirus Infections/veterinary , Flavivirus/isolation & purification , Galliformes/virology , Animals , Bird Diseases/virology , Flavivirus/classification , Flavivirus/genetics , Flavivirus Infections/epidemiology , Flavivirus Infections/virology , Molecular Sequence Data , Phylogeny , Reverse Transcriptase Polymerase Chain Reaction , Sequence Analysis, DNA , Spain/epidemiology
20.
J Gen Virol ; 92(Pt 11): 2512-2522, 2011 Nov.
Article in English | MEDLINE | ID: mdl-21775579

ABSTRACT

In recent years, West Nile virus (WNV) has re-emerged in the Western Mediterranean region. As a result, the number of complete WNV genome sequences available from this region has increased, allowing more detailed phylogenetic analyses, which may help to understand the evolutionary history of WNV circulating in the Western Mediterranean. To this aim, the present work describes six new complete WNV sequences from recent outbreaks and surveillance in Italy in 2008-2009 and in Spain in 2008 and 2010. Comparison with other sequences from different WNV clusters within lineage 1 (clade 1a) confirmed that all Western Mediterranean WNV isolates obtained since 1996 (except one from Tunisia, collected in 1997) cluster in a single monophyletic group (here called 'WMed' subtype). The analysis differentiated two subgroups within this subtype, which appear to have evolved from earlier WMed strains, suggesting a single introduction in the area, and further dissemination and evolution. Close similarities between WNV variants circulating in consecutive years, one in Spain, between 2007 and 2008, and another in Italy between 2008 and 2009, suggest that the virus possibly overwinters in Western Mediterranean sites. The NS3(249)-proline genotype, recently proposed as a virulence determinant for WNV, has arisen independently at least twice in the area. Overall, these results indicate that the frequent recurrence of outbreaks caused by phylogenetically homogeneous WNV in the Western Mediterranean since 1996 is consistent with a single introduction followed by viral persistence in endemic foci in the area, rather than resulting from independent introductions from exogenous endemic foci.


Subject(s)
Bird Diseases/epidemiology , Disease Outbreaks , Genome, Viral , Phylogeny , RNA, Viral/genetics , West Nile Fever/veterinary , West Nile virus/classification , Animals , Bird Diseases/virology , Cluster Analysis , Italy/epidemiology , Molecular Sequence Data , Sequence Analysis, DNA , Spain/epidemiology , West Nile Fever/epidemiology , West Nile Fever/virology , West Nile virus/genetics , West Nile virus/isolation & purification
SELECTION OF CITATIONS
SEARCH DETAIL
...