Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Micromachines (Basel) ; 14(8)2023 Aug 14.
Article in English | MEDLINE | ID: mdl-37630137

ABSTRACT

The phase change of all-inorganic cesium lead halide (CsPbI3) thin film from yellow δ-phase to black γ-/α-phase has been a topic of interest in the perovskite optoelectronics field. Here, the main focus is how to secure a black perovskite phase by avoiding a yellow one. In this work, we fabricated a self-doped CsPbI3 thin film by incorporating an excess cesium iodide (CsI) into the perovskite precursor solution. Then, we studied the effect of organic additive such as 1,8-diiodooctane (DIO), 1-chloronaphthalene (CN), and 1,8-octanedithiol (ODT) on the optical, structural, and morphological properties. Specifically, for elucidating the binary additive-solvent solution thermodynamics, we employed the Flory-Huggins theory based on the oligomer level of additives' molar mass. Resultantly, we found that the miscibility of additive-solvent displaying an upper critical solution temperature (UCST) behavior is in the sequence CN:DMF > ODT:DMF > DIO:DMF, the trends of which could be similarly applied to DMSO. Finally, the self-doping strategy with additive engineering should help fabricate a black γ-phase perovskite although the mixed phases of δ-CsPbI3, γ-CsPbI3, and Cs4PbI6 were observed under ambient conditions. However, the results may provide insight for the stability of metastable γ-phase CsPbI3 at room temperature.

2.
Micromachines (Basel) ; 14(7)2023 Jun 29.
Article in English | MEDLINE | ID: mdl-37512642

ABSTRACT

Room temperature (RT) synthesis of the ternary cesium lead bromide CsPbBr3 quantum dots with oleic acid and oleylamine ligands was developed by Zeng and coworkers in 2016. In their works, the supersaturated recrystallization (SR) was adopted as a processing method without requiring inert gas and high-temperature injection. However, the oleic acid ligand for haloplumbate is known to be relatively unstable. Hence, in this work, we employed the eco-friendly olive oil to replace the oleic acid portion for the SR process at RT. Resultantly, we found that the cube-shaped nanocrystal has a size of ~40-42 nm and an optical bandgap of ~2.3 eV independent of the surface ligands, but the photoluminescence lifetime (τav) and crystal packing are dependent on the ligand species, e.g., τav = 3.228 ns (olive oil and oleylamine; here less ordered) vs. 1.167 ns (oleic acid and oleylamine). Importantly, we explain the SR mechanism from the viewpoint of the classical LaMer model combined with the solvent engineering technique in details.

3.
Nanotechnology ; 28(11): 115707, 2017 Mar 17.
Article in English | MEDLINE | ID: mdl-28205511

ABSTRACT

In this paper, we investigate the quantized conduction behavior of conductive bridge random access memory (CBRAM) with varied materials and ramping rates. We report stable and reproducible quantized conductance states with integer multiples of fundamental conductance obtained by optimizing the voltage ramping rate and the Ti-diffusion barrier (DB) at the Cu/HfO2 interface. Owing to controlled diffusion of Cu ions by the Ti-DB and the optimized ramping rate, through which it was possible to control the time delay of Cu ion reduction, more than seven levels of discrete conductance states were clearly observed. Analytical modeling was performed to determine the rate-limiting step in filament growth based on an electrochemical redox reaction. Our understanding of the fundamental mechanisms of quantized conductance behaviors provide a promising future for the multi-bit CBRAM device.

SELECTION OF CITATIONS
SEARCH DETAIL