Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Genetics ; 227(1)2024 May 07.
Article in English | MEDLINE | ID: mdl-38262680

ABSTRACT

Echinobase (www.echinobase.org) is a model organism knowledgebase serving as a resource for the community that studies echinoderms, a phylum of marine invertebrates that includes sea urchins and sea stars. Echinoderms have been important experimental models for over 100 years and continue to make important contributions to environmental, evolutionary, and developmental studies, including research on developmental gene regulatory networks. As a centralized resource, Echinobase hosts genomes and collects functional genomic data, reagents, literature, and other information for the community. This third-generation site is based on the Xenbase knowledgebase design and utilizes gene-centric pages to minimize the time and effort required to access genomic information. Summary gene pages display gene symbols and names, functional data, links to the JBrowse genome browser, and orthology to other organisms and reagents, and tabs from the Summary gene page contain more detailed information concerning mRNAs, proteins, diseases, and protein-protein interactions. The gene pages also display 1:1 orthologs between the fully supported species Strongylocentrotus purpuratus (purple sea urchin), Lytechinus variegatus (green sea urchin), Patiria miniata (bat star), and Acanthaster planci (crown-of-thorns sea star). JBrowse tracks are available for visualization of functional genomic data from both fully supported species and the partially supported species Anneissia japonica (feather star), Asterias rubens (sugar star), and L. pictus (painted sea urchin). Echinobase serves a vital role by providing researchers with annotated genomes including orthology, functional genomic data aligned to the genomes, and curated reagents and data. The Echinoderm Anatomical Ontology provides a framework for standardizing developmental data across the phylum, and knowledgebase content is formatted to be findable, accessible, interoperable, and reusable by the research community.


Subject(s)
Databases, Genetic , Echinodermata , Animals , Echinodermata/genetics , Genome , Genomics/methods , Sea Urchins/genetics , Knowledge Bases
2.
Genetics ; 224(1)2023 05 04.
Article in English | MEDLINE | ID: mdl-36755307

ABSTRACT

Xenbase (https://www.xenbase.org/), the Xenopus model organism knowledgebase, is a web-accessible resource that integrates the diverse genomic and biological data from research on the laboratory frogs Xenopus laevis and Xenopus tropicalis. The goal of Xenbase is to accelerate discovery and empower Xenopus research, to enhance the impact of Xenopus research data, and to facilitate the dissemination of these data. Xenbase also enhances the value of Xenopus data through high-quality curation, data integration, providing bioinformatics tools optimized for Xenopus experiments, and linking Xenopus data to human data, and other model organisms. Xenbase also plays an indispensable role in making Xenopus data interoperable and accessible to the broader biomedical community in accordance with FAIR principles. Xenbase provides annotated data updates to organizations such as NCBI, UniProtKB, Ensembl, the Gene Ontology consortium, and most recently, the Alliance of Genomic Resources, a common clearing house for data from humans and model organisms. This article provides a brief overview of key and recently added features of Xenbase. New features include processing of Xenopus high-throughput sequencing data from the NCBI Gene Expression Omnibus; curation of anatomical, physiological, and expression phenotypes with the newly created Xenopus Phenotype Ontology; Xenopus Gene Ontology annotations; new anatomical drawings of the Normal Table of Xenopus development; and integration of the latest Xenopus laevis v10.1 genome annotations. Finally, we highlight areas for future development at Xenbase as we continue to support the Xenopus research community.


Subject(s)
Databases, Genetic , Genomics , Animals , Humans , Xenopus laevis/genetics , Xenopus/genetics , Computational Biology
3.
BMC Bioinformatics ; 23(1): 99, 2022 Mar 22.
Article in English | MEDLINE | ID: mdl-35317743

ABSTRACT

BACKGROUND: Ontologies of precisely defined, controlled vocabularies are essential to curate the results of biological experiments such that the data are machine searchable, can be computationally analyzed, and are interoperable across the biomedical research continuum. There is also an increasing need for methods to interrelate phenotypic data easily and accurately from experiments in animal models with human development and disease. RESULTS: Here we present the Xenopus phenotype ontology (XPO) to annotate phenotypic data from experiments in Xenopus, one of the major vertebrate model organisms used to study gene function in development and disease. The XPO implements design patterns from the Unified Phenotype Ontology (uPheno), and the principles outlined by the Open Biological and Biomedical Ontologies (OBO Foundry) to maximize interoperability with other species and facilitate ongoing ontology management. Constructed in Web Ontology Language (OWL) the XPO combines the existing uPheno library of ontology design patterns with additional terms from the Xenopus Anatomy Ontology (XAO), the Phenotype and Trait Ontology (PATO) and the Gene Ontology (GO). The integration of these different ontologies into the XPO enables rich phenotypic curation, whilst the uPheno bridging axioms allows phenotypic data from Xenopus experiments to be related to phenotype data from other model organisms and human disease. Moreover, the simple post-composed uPheno design patterns facilitate ongoing XPO development as the generation of new terms and classes of terms can be substantially automated. CONCLUSIONS: The XPO serves as an example of current best practices to help overcome many of the inherent challenges in harmonizing phenotype data between different species. The XPO currently consists of approximately 22,000 terms and is being used to curate phenotypes by Xenbase, the Xenopus Model Organism Knowledgebase, forming a standardized corpus of genotype-phenotype data that can be directly related to other uPheno compliant resources.


Subject(s)
Biological Ontologies , Animals , Gene Ontology , Humans , Phenotype , Xenopus laevis
4.
Nucleic Acids Res ; 50(D1): D970-D979, 2022 01 07.
Article in English | MEDLINE | ID: mdl-34791383

ABSTRACT

Echinobase (www.echinobase.org) is a third generation web resource supporting genomic research on echinoderms. The new version was built by cloning the mature Xenopus model organism knowledgebase, Xenbase, refactoring data ingestion pipelines and modifying the user interface to adapt to multispecies echinoderm content. This approach leveraged over 15 years of previous database and web application development to generate a new fully featured informatics resource in a single year. In addition to the software stack, Echinobase uses the private cloud and physical hosts that support Xenbase. Echinobase currently supports six echinoderm species, focused on those used for genomics, developmental biology and gene regulatory network analyses. Over 38 000 gene pages, 18 000 publications, new improved genome assemblies, JBrowse genome browser and BLAST + services are available and supported by the development of a new echinoderm anatomical ontology, uniformly applied formal gene nomenclature, and consistent orthology predictions. A novel feature of Echinobase is integrating support for multiple, disparate species. New genomes from the diverse echinoderm phylum will be added and supported as data becomes available. The common code development design of the integrated knowledgebases ensures parallel improvements as each resource evolves. This approach is widely applicable for developing new model organism informatics resources.


Subject(s)
Databases, Genetic , Echinodermata/genetics , Gene Regulatory Networks , Genome , User-Computer Interface , Animals , Echinodermata/classification , Genomics , Internet , Knowledge Bases , Molecular Sequence Annotation , Phylogeny , Xenopus/genetics
5.
Database (Oxford) ; 20212021 09 29.
Article in English | MEDLINE | ID: mdl-34585729

ABSTRACT

A keyword-based search of comprehensive databases such as PubMed may return irrelevant papers, especially if the keywords are used in multiple fields of study. In such cases, domain experts (curators) need to verify the results and remove the irrelevant articles. Automating this filtering process will save time, but it has to be done well enough to ensure few relevant papers are rejected and few irrelevant papers are accepted. A good solution would be fast, work with the limited amount of data freely available (full paper body may be missing), handle ambiguous keywords and be as domain-neutral as possible. In this paper, we evaluate a number of classification algorithms for identifying a domain-specific set of papers about echinoderm species and show that the resulting tool satisfies most of the abovementioned requirements. Echinoderms consist of a number of very different organisms, including brittle stars, sea stars (starfish), sea urchins and sea cucumbers. While their taxonomic identifiers are specific, the common names are used in many other contexts, creating ambiguity and making a keyword search prone to error. We try classifiers using Linear, Naïve Bayes, Nearest Neighbor, Tree, SVM, Bagging, AdaBoost and Neural Network learning models and compare their performance. We show how effective the resulting classifiers are in filtering irrelevant articles returned from PubMed. The methodology used is more dependent on the good selection of training data and is a practical solution that can be applied to other fields of study facing similar challenges. Database URL: The code and date reported in this paper are freely available at http://xenbaseturbofrog.org/pub/Text-Topic-Classifier/.


Subject(s)
Algorithms , Echinodermata , Animals , Bayes Theorem , Databases, Factual , PubMed
SELECTION OF CITATIONS
SEARCH DETAIL
...