Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 57
Filter
1.
Front Bioeng Biotechnol ; 11: 1243303, 2023.
Article in English | MEDLINE | ID: mdl-37675403

ABSTRACT

Introduction: Myosin IXB (MYO9B) is an unconventional myosin with RhoGAP activity and thus is a regulator of actin cytoskeletal organization. MYO9B was previously shown to be necessary for skeletal growth and health and to play a role in actin-based functions of both osteoblasts and osteoclasts. However, its role in responses to mechanical stimulation of bone cells has not yet been described. Therefore, experiments were undertaken to determine the role of MYO9B in bone cell responses to mechanical stress both in vitro and in vivo. Methods: MYO9B expression was knocked down in osteoblast and osteocyte cell lines using RNA interference and the resulting cells were subjected to mechanical stresses including cyclic tensile strain, fluid shear stress, and plating on different substrates (no substrate vs. monomeric or polymerized collagen type I). Osteocytic cells were also subjected to MYO9B regulation through Slit-Robo signaling. Further, wild-type or Myo9b -/- mice were subjected to a regimen of whole-body vibration (WBV) and changes in bone quality were assessed by micro-CT. Results: Unlike control cells, MYO9B-deficient osteoblastic cells subjected to uniaxial cyclic tensile strain were unable to orient their actin stress fibers perpendicular to the strain. Osteocytic cells in which MYO9B was knocked down exhibited elongated dendrites but were unable to respond normally to treatments that increase dendrite length such as fluid shear stress and Slit-Robo signaling. Osteocytic responses to mechanical stimuli were also found to be dependent on the polymerization state of collagen type I substrates. Wild-type mice responded to WBV with increased bone tissue mineral density values while Myo9b -/- mice responded with bone loss. Discussion: These results demonstrate that MYO9B plays a key role in mechanical stress-induced responses of bone cells in vitro and in vivo.

2.
Front Physiol ; 14: 1154454, 2023.
Article in English | MEDLINE | ID: mdl-37035668

ABSTRACT

Introduction: Vascular stiffness is a predictor of cardiovascular disease and pulse wave velocity (PWV) is the current standard for measuring in vivo vascular stiffness. Mean arterial pressure is the largest confounding variable to PWV; therefore, in this study we aimed to test the hypothesis that increased aortic PWV in type 2 diabetic mice is driven by increased blood pressure rather than vascular biomechanics. Methods and Results: Using a combination of in vivo PWV and ex vivo pressure myography, our data demonstrate no difference in ex vivo passive mechanics, including outer diameter, inner diameter, compliance (Db/db: 0.0094 ± 0.0018 mm2/mmHg vs. db/db: 0.0080 ± 0.0008 mm2/mmHg, p > 0.05 at 100 mmHg), and incremental modulus (Db/db: 801.52 ± 135.87 kPa vs. db/db: 838.12 ± 44.90 kPa, p > 0.05 at 100 mmHg), in normal versus diabetic 16 week old mice. We further report no difference in basal or active aorta biomechanics in normal versus diabetic 16 week old mice. Finally, we show here that the increase in diabetic in vivo aortic pulse wave velocity at baseline was completely abolished when measured at equivalent pharmacologically-modulated blood pressures, indicating that the elevated PWV was attributed to the concomitant increase in blood pressure at baseline, and therefore "stiffness." Conclusions: Together, these animal model data suggest an intimate regulation of blood pressure during collection of pulse wave velocity when determining in vivo vascular stiffness. These data further indicate caution should be exerted when interpreting elevated PWV as the pure marker of vascular stiffness.

3.
Vascul Pharmacol ; 145: 107087, 2022 08.
Article in English | MEDLINE | ID: mdl-35792302

ABSTRACT

BACKGROUND: Notch signaling is an evolutionarily conserved pathway that functions via direct cell-cell contact. The Notch ligand Jagged1 (Jag1) has been extensively studied in vascular development, particularly for its role in smooth muscle cell maturation. Endothelial cell-expressed Jag1 is essential for blood vessel formation by signaling to nascent vascular smooth muscle cells and promoting their differentiation. Given the established importance of Jag1 in endothelial cell/smooth muscle crosstalk during development, we sought to determine the extent of this communication in the adult vasculature for blood vessel function and homeostasis. METHODS: We conditionally deleted Jag1 in endothelial cells of adult mice and examined the phenotypic consequences on smooth muscle cells of the vasculature. RESULTS: Our results show that genetic loss of Jag1 in endothelial cells has a significant impact on Notch signaling and vascular smooth muscle function in mature blood vessels. Endothelial cell-specific deletion of Jag1 causes a concomitant loss of JAG1 and NOTCH3 expression in vascular smooth muscle cells, resulting in a transition to a less differentiated state. Aortic vascular smooth muscle cells isolated from the endothelial cell-specific Jag1 deficient mice retain an altered phenotype in culture with fixed changes in gene expression and reduced Notch signaling. Utilizing comparative RNA-sequence analysis, we found that Jag1 deficiency preferentially affects extracellular matrix and adhesion protein gene expression. Vasoreactivity studies revealed a reduced contractile response and impaired agonist-induced relaxation in endothelial cell Jag1-deficient aortas compared to controls. CONCLUSIONS: These data are the first to demonstrate that Jag1 in adult endothelial cells is required for the regulation and homeostasis of smooth muscle cell function in arterial vessels partially through the autoregulation of Notch signaling and cell matrix/adhesion components in smooth muscle cells.


Subject(s)
Endothelial Cells , Receptors, Notch , Animals , Calcium-Binding Proteins/genetics , Calcium-Binding Proteins/metabolism , Endothelial Cells/metabolism , Intercellular Signaling Peptides and Proteins/genetics , Intercellular Signaling Peptides and Proteins/metabolism , Ligands , Membrane Proteins/genetics , Membrane Proteins/metabolism , Mice , Muscle, Smooth, Vascular/metabolism , Phenotype , RNA/metabolism , Receptors, Notch/genetics , Receptors, Notch/metabolism , Serrate-Jagged Proteins/genetics , Serrate-Jagged Proteins/metabolism
4.
J Thromb Haemost ; 20(2): 470-477, 2022 02.
Article in English | MEDLINE | ID: mdl-34714974

ABSTRACT

BACKGROUND: Platelet adhesion to the subendothelial collagen fibrils is one of the first steps in hemostasis. Understanding how structural perturbations in the collagen fibril affect platelet adhesion can provide novel insights into disruption of hemostasis in various diseases. We have recently identified the presence of abnormal collagen fibrils with compromised D-periodic banding in the extracellular matrix remodeling present in abdominal aortic aneurysms (AAA). OBJECTIVE: In this study, we employed multimodal microscopy approaches to characterize how collagen fibril structure impacts platelet adhesion in clinical AAA tissues. METHODS: Ultrastructural atomic force microscopy (AFM) analysis was performed on tissue sections after staining with fluorescently labeled collagen hybridizing peptide (CHP) to recognize degraded collagen. Second harmonic generation (SHG) microscopy was used on CHP-stained sections to identify regions of intact versus degraded collagen. Finally, platelet adhesion was identified via SHG and indirect immunofluorescence on the same tissue sections. RESULTS: Our results indicate that ultrastructural features characterizing collagen fibril abnormalities coincide with CHP staining. SHG signal was absent from CHP-positive regions. Additionally, platelet binding was primarily localized to regions with SHG signal. Abnormal collagen fibrils present in AAA (in SHG negative regions) were thus found to inhibit platelet adhesion compared to normal fibrils. CONCLUSIONS: Our investigations reveal how the collagen fibril structure in the vessel wall can serve as another regulator of platelet-collagen adhesion. These results can be broadly applied to understand the role of collagen fibril structure in regulating thrombosis or bleeding disorders.


Subject(s)
Aortic Aneurysm, Abdominal , Collagen , Platelet Adhesiveness , Collagen/chemistry , Extracellular Matrix , Humans , Microscopy, Atomic Force , Peptides/chemistry , Protein Conformation
5.
Ann Maxillofac Surg ; 11(1): 148-151, 2021.
Article in English | MEDLINE | ID: mdl-34522672

ABSTRACT

RATIONALE: Intramuscular hemangiomas are unique benign vascular tumours of skeletal muscles; involving masseter and trapezius muscles in the majority of cases. The rationale was to emphasize that the diagnosis of asymptomatic swelling in the masseteric region is important as due to their deep anatomic location and unfamiliar presentation, they are often misdiagnosed as a parotid swelling or other muscular pathologies. PATIENT CONCERN: This report describes a rare case of a 25-year-old healthy male patient who presented with an asymptomatic swelling in the right masseteric region. The patient had cosmetic concerns due to the large size. DIAGNOSIS: Colour Doppler ultrasonography was done to assess the vascularity within the lesion. TREATMENT: Complete excision was successfully achieved using combined Risdon's and preauricular approach. OUTCOME: No signs of recurrence were observed after 6 months. TAKE-AWAY LESSONS: Appropriate selection of diagnostic modalities enables the clinician in making an accurate preoperative diagnosis of progressive swelling in the masseteric region.

6.
Math Biosci Eng ; 18(2): 1465-1484, 2021 01 27.
Article in English | MEDLINE | ID: mdl-33757194

ABSTRACT

Atherosclerosis is a major cause of abdominal aortic aneurysm (AAA) and up to 80% of AAA patients have atherosclerosis. Therefore it is critical to understand the relationship and interactions between atherosclerosis and AAA to treat atherosclerotic aneurysm patients more effectively. In this paper, we develop a mathematical model to mimic the progression of atherosclerotic aneurysms by including both the multi-layer structured arterial wall and the pathophysiology of atherosclerotic aneurysms. The model is given by a system of partial differential equations with free boundaries. Our results reveal a 2D biomarker, the cholesterol ratio and DDR1 level, assessing the risk of atherosclerotic aneurysms. The efficacy of different treatment plans is also explored via our model and suggests that the dosage of anti-cholesterol drugs is significant to slow down the progression of atherosclerotic aneurysms while the additional anti-DDR1 injection can further reduce the risk.


Subject(s)
Aortic Aneurysm, Abdominal , Atherosclerosis , Aortic Aneurysm, Abdominal/epidemiology , Atherosclerosis/epidemiology , Biomarkers , Humans , Models, Theoretical
7.
Exp Eye Res ; 206: 108542, 2021 05.
Article in English | MEDLINE | ID: mdl-33744258

ABSTRACT

The aim of the study was to investigate the effectiveness of exogenous recombinant human decoron and an accompanying penetration-enhancing solution in stiffening ex-vivo porcine corneas both transepithelially and after de-epithelialization. Eight porcine paired eyes were treated transepithelially: one eye with a pre-treatment solution (Pre-Tx), penetration enhancing solution (PE), and decoron while the fellow eye was treated by the same protocol but without decoron. A second group included 4 de-epithelialized pairs treated identically. The final group included 4 de-epithelialized pairs with one eye treated with Pre-Tx, PE, and decoron while the fellow eye was treated without PE. Uniaxial tensile testing was used to compare the corneal stiffness between the different treatment conditions. Residual tissue underwent immunohistochemistry analysis to evaluate the depth of penetration of decoron into the corneal stroma. There was no stiffening effect exhibited among corneas treated transepithelially with decoron compared to control (P > 0.05) and poor stromal penetration was exhibited on tissue analysis. Among de-epithelialized corneas, there was a significant stiffening effect seen in those treated with decoron at 3%, 4%, 5%, & 6% strain (P < 0.05) compared to control. Among de-epithelialized corneas there was also a significant stiffening effect seen in those treated with the PE and decoron at 4%, 5%, & 6% strain (P < 0.05) with improved stromal penetration confirmed by immunohistochemistry, versus without PE. De-epithelialization is necessary for effective stromal penetration of decoron. Depth of penetration and subsequent corneal stiffening may be improved with a penetration enhancing solution. Compared to riboflavin, decoron requires shorter treatment time and spares UV light exposure.


Subject(s)
Collagen/pharmacology , Corneal Stroma/drug effects , Cross-Linking Reagents/pharmacology , Keratoconus/drug therapy , Riboflavin/pharmacology , Animals , Corneal Stroma/pathology , Corneal Stroma/physiopathology , Disease Models, Animal , Elasticity , Epithelium, Corneal/drug effects , Epithelium, Corneal/pathology , Epithelium, Corneal/physiopathology , Keratoconus/pathology , Keratoconus/physiopathology , Photosensitizing Agents/pharmacology , Swine , Ultraviolet Rays
8.
J Magn Magn Mater ; 521(Pt 1)2021 Mar.
Article in English | MEDLINE | ID: mdl-33343059

ABSTRACT

Characterizing the iron distribution in tissue sections is important for several pathologies. Iron content in excised tissue is typically analyzed via histochemical stains, which are dependent on sample preparation and staining protocols. In our recent studies, we examined how magnetic properties of iron can also be exploited to characterize iron distribution in tissue sections in a label free manner. To enable a histomagnetic characterization of iron in a wide variety of available tissues, it is important to extend it to samples routinely prepared for histochemical staining, which often involve use of chemical fixatives. In this study, we took a systematic approach to determine differences between unfixed and formalin-fixed murine spleen tissues in histomagnetic characterization of iron. Superconducting quantum interference device (SQUID) magnetometry and magnetic force microscopy (MFM) were used for macro- and micro-scale histomagnetic characterization. Perl's stain was used for histochemical characterization of ferric (Fe3+) iron on adjacent sections as that used for MFM analysis. While histochemical analysis revealed a substantial difference in the dispersion of the stain between fixed versus unfixed samples, histomagnetic characterization was not dependent on chemical fixation of tissue. The results from this study reveal that histomagnetic characterization of iron is free from staining artifacts which can be present in histochemical analysis.

9.
J Orthop Res ; 39(9): 1898-1907, 2021 09.
Article in English | MEDLINE | ID: mdl-32915471

ABSTRACT

Given the importance of the cartilage endplate (CEP) in low back pain (LBP), there is a need to characterize the human CEP at the molecular, cell, and tissue levels to inform treatment strategies that target it. The goal of this study was to characterize the structure, matrix composition, and cell phenotype of the human CEP compared with adjacent tissues within the intervertebral joint: the nucleus pulposus (NP), annulus fibrosus (AF), and articular cartilage (AC). Isolated CEP, NP, AF, and AC tissues and cells were evaluated for cell morphology, matrix composition, collagen structure, glycosaminoglycan content, and gene and protein expression. The CEP contained elongated cells that mainly produce a collagen-rich interterritorial matrix and a proteoglycan-rich territorial matrix. The CEP contained significantly fewer glycosaminoglycans than the NP tissue. Significant differences in matrix and cell marker gene expression were observed between CEP and NP or AF, with the greatest differences between CEP and AC. We were able to distinguish NP from CEP cells using collagen-10 (COLX), highlighting COLX as a potential CEP marker. Our findings suggest that at the cell and tissue levels, the CEP demonstrates both similarities and differences when compared with NP, AF, and hyaline AC. This study highlights a unique structure, matrix composition, and cell phenotype for the human CEP and can help to inform regenerative strategies that target the intervertebral disc joint in chronic LBP.


Subject(s)
Annulus Fibrosus , Cartilage, Articular , Intervertebral Disc Degeneration , Intervertebral Disc , Nucleus Pulposus , Annulus Fibrosus/metabolism , Cartilage, Articular/metabolism , Collagen/metabolism , Glycosaminoglycans/metabolism , Humans , Intervertebral Disc/metabolism , Intervertebral Disc Degeneration/metabolism , Nucleus Pulposus/metabolism
10.
Clin Sci (Lond) ; 134(12): 1555-1572, 2020 06 26.
Article in English | MEDLINE | ID: mdl-32490531

ABSTRACT

Abdominal aortic aneurysm (AAA) is a localized pathological dilation of the aorta exceeding the normal diameter (∼20 mm) by more than 50% of its original size (≥30 mm), accounting for approximately 150000-200000 deaths worldwide per year. We previously reported that Notch inhibition does not decrease the size of pre-established AAA at late stage of the disease. Here, we examined whether a potent pharmacologic inhibitor of Notch signaling (DAPT (N-[N-(3,5-Difluorophenacetyl)-l-alanyl]-S-phenylglycine t-butyl ester)), regresses an actively growing AAA. In a mouse model of an aneurysm (Apoe-/- mice; n=44); DAPT (n=17) or vehicle (n=17) was randomly administered at day 14 of angiotensin II (AngII; 1 µg/min/kg), three times a week and mice were killed on day 42. Progressive increase in aortic stiffness and maximal intraluminal diameter (MILD) was observed in the AngII + vehicle group, which was significantly prevented by DAPT (P<0.01). The regression of aneurysm with DAPT was associated with reduced F4/80+Cd68+ (cluster of differentiation 68) inflammatory macrophages. DAPT improved structural integrity of aorta by reducing collagen fibrils abnormality and restoring their diameter. Mechanistically, C-C chemokine receptor type 7 (Ccr7)+F4/80- dendritic cells (DCs), implicated in the regression of aneurysm, were increased in the aorta of DAPT-treated mice. In the macrophages stimulated with AngII or lipopolysaccharide (LPS), DAPT reverted the expression of pro-inflammatory genes Il6 and Il12 back to baseline within 6 h compared with vehicle (P<0.05). DAPT also significantly increased the expression of anti-inflammatory genes, including c-Myc, Egr2, and Arg1 at 12-24 h in the LPS-stimulated macrophages (P<0.05). Overall, these regressive effects of Notch signaling inhibitor emphasize its therapeutic implications to prevent the progression of active AAAs.


Subject(s)
Aortic Aneurysm, Abdominal/drug therapy , Dipeptides/therapeutic use , Receptors, Notch/antagonists & inhibitors , Signal Transduction , Animals , Aorta/metabolism , Aorta/pathology , Aortic Aneurysm, Abdominal/pathology , Apoptosis , Cytokines/metabolism , Dendritic Cells/metabolism , Dipeptides/pharmacology , Disease Progression , Extracellular Matrix/metabolism , Inflammation Mediators/metabolism , Macrophages/metabolism , Male , Mice , Phenotype , Receptors, Notch/metabolism
11.
Acta Biomater ; 110: 129-140, 2020 07 01.
Article in English | MEDLINE | ID: mdl-32339711

ABSTRACT

Vascular diseases like abdominal aortic aneurysms (AAA) are characterized by a drastic remodeling of the vessel wall, accompanied with changes in the elastin and collagen content. At the macromolecular level, the elastin fibers in AAA have been reported to undergo significant structural alterations. While the undulations (waviness) of the collagen fibers is also reduced in AAA, very little is understood about changes in the collagen fibril at the sub-fiber level in AAA as well as in other vascular pathologies. In this study we investigated structural changes in collagen fibrils in human AAA tissue extracted at the time of vascular surgery and in aorta extracted from angiotensin II (AngII) infused ApoE-/- mouse model of AAA. Collagen fibril structure was examined using transmission electron microscopy and atomic force microscopy. Images were analyzed to ascertain length and depth of D-periodicity, fibril diameter and fibril curvature. Abnormal collagen fibrils with compromised D-periodic banding were observed in the excised human tissue and in remodeled regions of AAA in AngII infused mice. These abnormal fibrils were characterized by statistically significant reduction in depths of D-periods and an increased curvature of collagen fibrils. These features were more pronounced in human AAA as compared to murine samples. Thoracic aorta from Ang II-infused mice, abdominal aorta from saline-infused mice, and abdominal aorta from non-AAA human controls did not contain abnormal collagen fibrils. The structural alterations in abnormal collagen fibrils appear similar to those reported for collagen fibrils subjected to mechanical overload or chronic inflammation in other tissues. Detection of abnormal collagen could be utilized to better understand the functional properties of the underlying extracellular matrix in vascular as well as other pathologies. STATEMENT OF SIGNIFICANCE: Several vascular diseases including abdominal aortic aneurysm (AAA) are characterized by extensive remodeling in the vessel wall. Although structural alterations in elastin fibers are well characterized in vascular diseases, very little is known about the collagen fibril structure in these diseases. We report here a comprehensive ultrastructural evaluation of the collagen fibrils in AAA, using high-resolution microscopy techniques like transmission electron microscopy (TEM) and atomic force microscopy (AFM). We elucidate how abnormal collagen fibrils with compromised D-periodicity and increased fibril curvature are present in the vascular tissue in both clinical AAA as well as in murine models. We discuss how these abnormal collagen fibrils are likely a consequence of mechanical overload accompanying AAA and could impact the functional properties of the underlying tissue.


Subject(s)
Aortic Aneurysm, Abdominal , Angiotensin II , Animals , Aorta, Abdominal , Collagen , Disease Models, Animal , Extracellular Matrix , Humans , Mice , Mice, Knockout
12.
Nanoscale Adv ; 1(6): 2348-2355, 2019 Jun 01.
Article in English | MEDLINE | ID: mdl-31608318

ABSTRACT

Magnetic force microscopy (MFM) is an atomic force microscopy (AFM)-based technique to map magnetic domains in a sample. MFM is widely used to characterize magnetic recording media, magnetic domain walls in materials, nanoparticles and more recently iron deposits in biological samples. However, conventional MFM requires multiple scans of the samples, suffers from various artifacts and is limited in its capability for multimodal imaging or imaging in a fluid environment. We propose a new modality, namely indirect magnetic force microscopy (ID-MFM), a technique that employs an ultrathin barrier between the probe and the sample. Using fluorescently conjugated superparamagnetic nanoparticles, we demonstrate how ID-MFM can be achieved using commercially available silicon nitride windows, MFM probes and AFM equipment. The MFM signals obtained using ID-MFM were comparable to those obtained using conventional MFM. Further, samples prepared for ID-MFM were compatible with multi-modal imaging via fluorescence and transmission electron microscopy. Thus ID-MFM can serve as a high-throughput, multi-modal microscopy technique which can be especially attractive for detecting magnetism in nanoparticles and biological samples.

13.
Mater Sci Eng C Mater Biol Appl ; 104: 109905, 2019 Nov.
Article in English | MEDLINE | ID: mdl-31499975

ABSTRACT

Collagen fibrils serve as the major template for mineral deposits in both biologically derived and engineered tissues. In recent years certain non-collagenous proteins have been elucidated as important players in differentially modulating intra vs. extra-fibrillar mineralization of collagen. We and others have previously shown that the expression of the collagen receptor, discoidin domain receptor 2 (DDR2) positively correlates with matrix mineralization. The objective of this study was to examine if the ectodomain (ECD) of DDR2 modulates intra versus extra-fibrillar mineralization of collagen independent of cell-signaling. For this purpose, a decellularized collagenous substrate, namely glutaraldehyde fixed porcine pericardium (GFPP) was subjected to biomimetic mineralization protocols. GFPP was incubated in modified simulated body fluid (mSBF) or polymer-induced liquid precursor (PILP) solutions in the presence of recombinant DDR2 ECD (DDR2-Fc) to mediate extra or intra-fibrillar mineralization of collagen. Thermogravimetric analysis revealed that DDR2-Fc increased mineral content in GFPP calcified in mSBF while no significant differences were observed in PILP mediated mineralization. Electron microscopy approaches were used to evaluate the quality and quantity mineral deposits. An increase in the matrix to mineral ratio, frequency of particles and size of mineral deposits was observed in the presence of DDR2-Fc in mSBF. Von Kossa staining and immunohistochemistry analysis of adjacent sections indicated that DDR2-Fc bound to both the matrix and mineral phase of GFPP. Further, DDR2-Fc was found to bind to hydroxyapatite (HAP) particles and enhance the nucleation of mineral deposits in mSBF solutions independent of collagen. Taken together, our results elucidate DDR2 ECD as a novel player in the modulation of extra-fibrillar mineralization of collagen.


Subject(s)
Biomimetic Materials/pharmacology , Biomineralization , Collagen/metabolism , Discoidin Domain Receptor 2/chemistry , Animals , Extracellular Matrix/drug effects , Extracellular Matrix/metabolism , Glutaral/pharmacology , Humans , Pericardium/drug effects , Polymers/pharmacology , Protein Domains , Solubility , Spectrum Analysis, Raman , Swine
15.
Biochim Biophys Acta Mol Cell Res ; 1866(11): 118496, 2019 11.
Article in English | MEDLINE | ID: mdl-31229648

ABSTRACT

Assembly of cell-surface receptors into specific oligomeric states and/or clusters before and after ligand binding is an important feature governing their biological function. Receptor oligomerization can be mediated by specific domains of the receptor, ligand binding, configurational changes or other interacting molecules. In this review we summarize our understanding of the oligomeric state of discoidin domain receptors (DDR1 and DDR2), which belong to the receptor tyrosine kinase family (RTK). DDRs form an interesting system from an oligomerization perspective as their ligand collagen(s) can also undergo supramolecular assembly to form fibrils. Even though DDR1 and DDR2 differ in the domains responsible to form ligand-free dimers they share similarities in binding to soluble, monomeric collagen. However, only DDR1b forms globular clusters in response to monomeric collagen and not DDR2. Interestingly, both DDR1 and DDR2 are assembled into linear clusters by the collagen fibril. Formation of these clusters is important for receptor phosphorylation and is mediated in part by other membrane components. We summarize how the oligomeric status of DDRs shares similarities with other members of the RTK family and with collagen receptors. Unraveling the multiple macro-molecular configurations adopted by this receptor-ligand pair can provide novel insights into the intricacies of cell-matrix interactions.


Subject(s)
Discoidin Domain Receptors/chemistry , Discoidin Domain Receptors/metabolism , Protein Binding , Binding Sites , Collagen/chemistry , Discoidin Domain , Discoidin Domain Receptor 1/chemistry , Discoidin Domain Receptor 1/metabolism , Discoidin Domain Receptor 2/chemistry , Discoidin Domain Receptor 2/metabolism , Fibrillar Collagens , Humans , Ligands , Phosphorylation , Receptor Protein-Tyrosine Kinases , Receptors, Collagen/chemistry , Receptors, Collagen/metabolism
16.
J Mol Biol ; 431(2): 368-390, 2019 01 18.
Article in English | MEDLINE | ID: mdl-30458172

ABSTRACT

Discoidin domain receptors (DDR1 and DDR2) are receptor tyrosine kinases that signal in response to collagen. We had previously shown that collagen binding leads to clustering of DDR1b, a process partly mediated by its extracellular domain (ECD). In this study, we investigated (i) the impact of the oligomeric state of DDR2 ECD on collagen binding and fibrillogenesis, (ii) the effect of collagen binding on DDR2 clustering, and (iii) the spatial distribution and phosphorylation status of DDR1b and DDR2 after collagen stimulation. Studies were conducted using purified recombinant DDR2 ECD proteins in monomeric, dimeric or oligomeric state, and MC3T3-E1 cells expressing full-length DDR2-GFP or DDR1b-YFP. We show that the oligomeric form of DDR2 ECD displayed enhanced binding to collagen and inhibition of fibrillogenesis. Using atomic force and fluorescence microscopy, we demonstrate that unlike DDR1b, DDR2 ECD and DDR2-GFP do not undergo collagen-induced receptor clustering. However, after prolonged collagen stimulation, both DDR1b-YFP and DDR2-GFP formed filamentous structures consistent with spatial re-distribution of DDRs in cells. Immunocytochemistry revealed that while DDR1b clusters co-localized with non-fibrillar collagen, DDR1b/DDR2 filamentous structures associated with collagen fibrils. Antibodies against a tyrosine phosphorylation site in the intracellular juxtamembrane region of DDR1b displayed positive signals in both DDR1b clusters and filamentous structures. However, only the filamentous structures of both DDR1b and DDR2 co-localized with antibodies directed against tyrosine phosphorylation sites within the receptor kinase domain. Our results uncover key differences and similarities in the clustering abilities and spatial distribution of DDR1b and DDR2 and their impact on receptor phosphorylation.


Subject(s)
Collagen Type I/metabolism , Discoidin Domain Receptor 1/metabolism , Discoidin Domain Receptor 2/metabolism , Phosphorylation/physiology , 3T3 Cells , Animals , Binding Sites/physiology , Cell Line , Cell Membrane/metabolism , Cluster Analysis , Extracellular Matrix/metabolism , HEK293 Cells , Humans , Mice , Protein Binding/physiology , Receptor Protein-Tyrosine Kinases/metabolism , Recombinant Proteins/metabolism , Signal Transduction/physiology , Tyrosine/metabolism
17.
Sci Rep ; 8(1): 13218, 2018 Aug 30.
Article in English | MEDLINE | ID: mdl-30158689

ABSTRACT

A correction to this article has been published and is linked from the HTML and PDF versions of this paper. The error has not been fixed in the paper.

18.
Acta Biomater ; 70: 110-119, 2018 04 01.
Article in English | MEDLINE | ID: mdl-29410241

ABSTRACT

A cell's insoluble microenvironment has increasingly been shown to exert influence on its function. In particular, matrix stiffness and adhesiveness strongly impact behaviors such as cell spreading and differentiation, but materials that allow for independent control of these parameters within a fibrous, stromal-like microenvironment are very limited. In the current work, we devise a self-assembling peptide (SAP) system that facilitates user-friendly control of matrix stiffness and RGD (Arg-Gly-Asp) concentration within a hydrogel possessing a microarchitecture similar to stromal extracellular matrix. In this system, the RGD-modified SAP sequence KFE-RGD and the scrambled sequence KFE-RDG can be directly swapped for one another to change RGD concentration at a given matrix stiffness and total peptide concentration. Stiffness is controlled by altering total peptide concentration, and the unmodified base peptide KFE-8 can be included to further increase this stiffness range due to its higher modulus. With this tunable system, we demonstrate that human mesenchymal stem cell morphology and differentiation are influenced by both gel stiffness and the presence of functional cell binding sites in 3D culture. Specifically, cells 24 hours after encapsulation were only able to spread out in stiffer matrices containing KFE-RGD. Upon addition of soluble adipogenic factors, soft gels facilitated the greatest adipogenesis as determined by the presence of lipid vacuoles and PPARγ-2 expression, while increasing KFE-RGD concentration at a given stiffness had a negative effect on adipogenesis. This three-component hydrogel system thus allows for systematic investigation of matrix stiffness and RGD concentration on cell behavior within a fibrous, three-dimensional matrix. STATEMENT OF SIGNIFICANCE: Physical cues from a cell's surrounding environment-such as the density of cell binding sites and the stiffness of the surrounding material-are increasingly being recognized as key regulators of cell function. Currently, most synthetic biomaterials used to independently tune these parameters lack the fibrous structure characteristic of stromal extracellular matrix, which can be important to cells naturally residing within stromal tissues. In this manuscript, we describe a 3D hydrogel encapsulation system that provides user-friendly control over matrix stiffness and binding site concentration within the context of a stromal-like microarchitecture. Binding site concentration and gel stiffness both influenced cell spreading and differentiation, highlighting the utility of this system to study the independent effects of these material properties on cell function.


Subject(s)
Adipogenesis , Extracellular Matrix/chemistry , Hydrogels/chemistry , Mesenchymal Stem Cells/metabolism , Oligopeptides/chemistry , Cell Line , Humans , Mesenchymal Stem Cells/cytology , Porosity
19.
Sci Rep ; 7(1): 14391, 2017 10 31.
Article in English | MEDLINE | ID: mdl-29089514

ABSTRACT

Wearable soft robotic systems are enabling safer human-robot interaction and are proving to be instrumental for biomedical rehabilitation. In this manuscript, we propose a novel, modular, wearable robotic device for human (lumbar) spine assistance that is developed using vacuum driven, soft pneumatic actuators (V-SPA). The actuators can handle large, repetitive loads efficiently under compression. Computational models to capture the complex non-linear mechanical behavior of individual actuator modules and the integrated assistive device are developed using the finite element method (FEM). The models presented can predict system behavior at large values of mechanical deformations and allow for rapid design iterations. It is shown that a single actuator module can be used to obtain a variety of different motion and force profiles and yield multiple degrees of freedom (DOF) depending on the module loading conditions, resulting in high system versatility and adaptability, and efficient replication of the targeted motion range for the human spinal cord. The efficacy of the finite element model is first validated for a single module using experimental results that include free displacement and blocked-forces. These results are then extended to encompass an extensive investigation of bio-mechanical performance requirements from the module assembly for the human spine-assistive device proposed.


Subject(s)
Rehabilitation/instrumentation , Robotics , Self-Help Devices , Spinal Cord Diseases/rehabilitation , Wearable Electronic Devices , Biomechanical Phenomena , Computer Simulation , Equipment Design , Finite Element Analysis , Humans , Lumbar Vertebrae , Materials Testing , Models, Biological , Movement , Nonlinear Dynamics , Range of Motion, Articular , Spinal Cord Diseases/physiopathology , Vacuum , Weight-Bearing
20.
Indian J Endocrinol Metab ; 21(4): 564-569, 2017.
Article in English | MEDLINE | ID: mdl-28670541

ABSTRACT

BACKGROUND AND AIMS: Globally, depression has been linked to Type-2 diabetes mellitus (T2DM). However, similar data from India are scant. This study evaluated the occurrence and predictors of depression and health-related quality of life (QOL) in patients with T2DM as compared to healthy controls. MATERIALS AND METHODS: One hundred adults with T2DM without prior diagnosis of depression and 100 matched controls were evaluated. Depression was assessed using Patient Health Questionnaire-9. World Health Organization QOL Brief (WHO-QOL-BREF) was used to assess QOL. Demography, anthropometry, biochemical parameters of diabetes control, and microvascular and macrovascular complications in patients were recorded. RESULTS: Depression was significantly more common in T2DM (63%) as compared to controls (48%) (odds ratio [OR] - 1.84 [1.04, 3.24]; P = 0.03). In T2DM, depression was higher in patients with disease duration >5 years (OR = 2.66; P = 0.02), glycated hemoglobin >7% (OR = 3.45; P = 0.004), retinopathy (OR - 3.56; P = 0.03), and nephropathy (OR - 4.11; P = 0.07). Occurrence of depression was significantly higher among the patients with macrovascular complications, namely, coronary artery disease (17.4%; P = 0.000006), cerebrovascular disease (14.2%; P = 0.0006), and peripheral vascular disease (7.9%; P = 0.05). Insulin users had higher depression as compared to patients using only oral antihyperglycemic medications (P = 0.034). Patient with depression had significantly low QOL. The WHO-QOL for all the domains was significantly lower in T2DM with microvascular and macrovascular complications, as compared to those without. CONCLUSION: Indian T2DM had higher prevalence of depression and lower QOL as compared to controls, which was associated with poor glycemic control and higher end-organ damage. Public health measures are required to create more awareness for managing depression in diabetes.

SELECTION OF CITATIONS
SEARCH DETAIL
...