Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 79
Filter
1.
Small ; : e2307750, 2024 Mar 03.
Article in English | MEDLINE | ID: mdl-38431939

ABSTRACT

As an innovative technology, four-dimentional (4D) printing is built upon the principles of three-dimentional (3D) printing with an additional dimension: time. While traditional 3D printing creates static objects, 4D printing generates "responsive 3D printed structures", enabling them to transform or self-assemble in response to external stimuli. Due to the dynamic nature, 4D printing has demonstrated tremendous potential in a range of industries, encompassing aerospace, healthcare, and intelligent devices. Nanotechnology has gained considerable attention owing to the exceptional properties and functions of nanomaterials. Incorporating nanomaterials into an intelligent matrix enhances the physiochemical properties of 4D printed constructs, introducing novel functions. This review provides a comprehensive overview of current applications of nanomaterials in 4D printing, exploring their synergistic potential to create dynamic and responsive structures. Nanomaterials play diverse roles as rheology modifiers, mechanical enhancers, function introducers, and more. The overarching goal of this review is to inspire researchers to delve into the vast potential of nanomaterial-enabled 4D printing, propelling advancements in this rapidly evolving field.

2.
ACS Biomater Sci Eng ; 9(9): 5186-5204, 2023 09 11.
Article in English | MEDLINE | ID: mdl-37585807

ABSTRACT

This systematic review and meta-analysis focused on the effectiveness of biomaterials integrated with specific microRNAs (miRNAs) for bone fracture repair treatment. We conducted a comprehensive search of the PubMed, Web of Science, and Scopus databases, identifying 42 relevant papers up to March 2022. Hydrogel-based scaffolds were the most commonly used, incorporating miRNAs like miR-26a, miR-21, and miR-222, with miR-26a being the most prevalent. The meta-analysis revealed significant benefits of incorporating miRNAs into scaffolds for bone repair, particularly in hydrogel scaffolds. However, some controversies were observed among studies, presenting challenges in selecting appropriate miRNAs for this purpose. The study concludes that incorporating specific miRNAs into bone biomaterials enhances bone regeneration, but further trials comparing different biomaterials and miRNAs are necessary to validate their potential applications for bone tissue regeneration.


Subject(s)
MicroRNAs , MicroRNAs/genetics , MicroRNAs/therapeutic use , Biocompatible Materials/therapeutic use , Bone Regeneration/genetics , Hydrogels/therapeutic use , Computational Biology
3.
Int J Biol Macromol ; 246: 125669, 2023 Aug 15.
Article in English | MEDLINE | ID: mdl-37406901

ABSTRACT

Tissue engineering research has undergone to a revolutionary improvement, thanks to technological advancements, such as the introduction of bioprinting technologies. The ability to develop suitable customized biomaterial inks/bioinks, with excellent printability and ability to promote cell proliferation and function, has a deep impact on such improvements. In this context, printing inks based on chitosan and its derivatives have been instrumental. Thus, the current review aims at providing a comprehensive overview on chitosan-based materials as suitable inks for 3D/4D (bio)printing and their applicability in creating advanced drug delivery platforms and tissue engineered constructs. Furthermore, relevant strategies to improve the mechanical and biological performances of this biomaterial are also highlighted.


Subject(s)
Chitosan , Tissue Engineering , Printing, Three-Dimensional , Biocompatible Materials , Drug Delivery Systems , Tissue Scaffolds
4.
Adv Mater ; 35(38): e2304176, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37270664

ABSTRACT

With the promotion of nanochemistry research, large numbers of nanomaterials have been applied in vivo to produce desirable cytotoxic substances in response to endogenous or exogenous stimuli for achieving disease-specific therapy. However, the performance of nanomaterials is a critical issue that is difficult to improve and optimize under biological conditions. Defect-engineered nanoparticles have become the most researched hot materials in biomedical applications recently due to their excellent physicochemical properties, such as optical properties and redox reaction capabilities. Importantly, the properties of nanomaterials can be easily adjusted by regulating the type and concentration of defects in the nanoparticles without requiring other complex designs. Therefore, this tutorial review focuses on biomedical defect engineering and briefly discusses defect classification, introduction strategies, and characterization techniques. Several representative defective nanomaterials are especially discussed in order to reveal the relationship between defects and properties. A series of disease treatment strategies based on defective engineered nanomaterials are summarized. By summarizing the design and application of defective engineered nanomaterials, a simple but effective methodology is provided for researchers to design and improve the therapeutic effects of nanomaterial-based therapeutic platforms from a materials science perspective.


Subject(s)
Nanoparticles , Nanostructures , Nanostructures/therapeutic use , Nanostructures/chemistry , Nanoparticles/chemistry , Biomedical Engineering , Bioengineering , Drug Delivery Systems/methods
5.
EXCLI J ; 22: 367-391, 2023.
Article in English | MEDLINE | ID: mdl-37223084

ABSTRACT

Non-alcoholic fatty liver disease (NAFLD) has become the world's most common chronic liver disease. However, due to the lack of reliable in vitro NAFLD models, drug development studies have faced many limitations, and there is no food and drug administration-approved medicine for NAFLD treatment. A functional biomimetic in vitro human liver model requires an optimized natural microenvironment using appropriate cellular composition, to provide constructive cell-cell interactions, and niche-specific bio-molecules to supply crucial cues as cell-matrix interplay. Such a suitable liver model could employ appropriate and desired biochemical, mechanical, and physical properties similar to native tissue. Moreover, bioengineered three-dimensional tissues, specially microtissues and organoids, and more recently using infusion-based cultivation systems such as microfluidics can mimic natural tissue conditions and facilitate the exchange of nutrients and soluble factors to improve physiological function in the in vitro generated constructs. This review highlights the key players involved in NAFLD initiation and progression and discussed the available cells and matrices for in vitro NAFLD modeling. The strategies for optimizing the liver microenvironment to generate a powerful and biomimetic in vitro NAFLD model were described as well. Finally, the current challenges and future perospective for promotion in this subject were discussed.

6.
Int J Biomater ; 2023: 2227509, 2023.
Article in English | MEDLINE | ID: mdl-36909982

ABSTRACT

The present study outlines the evaluation of textile materials that are currently in the market for cell culture applications. By using normal LaserJet printing techniques, we created the substrates, which were then characterized physicochemically and biologically. In particular, (i) we found that the weave pattern and (ii) the chemical nature of the textiles significantly influenced the behaviour of the cells. Textiles with closely knitted fibers and cell adhesion motifs, exhibited better cell adhesion and proliferation over a period of 7 days. All the substrates supported good viability of cells (>80%). We believe that these aspects make commercially available textiles as a potential candidate for large-scale culture of adherent cells.

7.
Environ Sci Pollut Res Int ; 30(16): 46950-46959, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36735138

ABSTRACT

Among the several aspects of decay products behavior, deposition is of special significance because of its prominent role in the activity removal from the environment, which eventually results in the occurrence of decay product disequilibrium with the parent gas. This point is particularly important in case of thoron dosimetry where thoron progeny 212Pb accounts for the most of the radiological dose. The deposition depends on the size distribution of decay products and the structure of air turbulence at the air-surface interface. In the present work, the effect of varying air-flow (fan speed) and aerosol count median diameter (CMD) was studied on the deposition and distribution profile of 212Pb using computational fluid dynamics (CFD). The simulations have been carried out in a cubical calibration chamber of volume 8 m3, facilitated at RP&AD, BARC. Simulated results showed that the increase of total depositional loss rate of attached fraction of 212Pb due to increase of the fan speed was significant for CMD up to 400 nm, beyond which this effect started becoming less prominent with increasing diameter. Besides, a minimum of the total depositional loss rate curve was seen to be shifted to the higher CMD with increase of the fan speed. CFD results were found to be in good agreement with experimental observations obtained in the controlled conditions with thoron source.


Subject(s)
Air Pollutants, Radioactive , Air Pollution, Indoor , Radiation Monitoring , Radon , Air Pollutants, Radioactive/analysis , Lead , Air Pollution, Indoor/analysis , Calibration , Hydrodynamics , Radiation Monitoring/methods , Radon/analysis , Radon Daughters/analysis , Aerosols
8.
Small ; 19(12): e2206253, 2023 03.
Article in English | MEDLINE | ID: mdl-36642806

ABSTRACT

Sonodynamic therapy (SDT) has considerably revolutionized the healthcare sector as a viable noninvasive therapeutic procedure. It employs a combination of low-intensity ultrasound and chemical entities, known as a sonosensitizer, to produce cytotoxic reactive oxygen species (ROS) for cancer and antimicrobial therapies. With nanotechnology, several unique nanoplatforms are introduced as a sonosensitizers, including, titanium-based nanomaterials, thanks to their high biocompatibility, catalytic efficiency, and customizable physicochemical features. Additionally, developing titanium-based sonosensitizers facilitates the integration of SDT with other treatment modalities (for example, chemotherapy, chemodynamic therapy, photodynamic therapy, photothermal therapy, and immunotherapy), hence increasing overall therapeutic results. This review summarizes the most recent developments in cancer therapy and tissue engineering using titanium nanoplatforms mediated SDT. The synthesis strategies and biosafety aspects of Titanium-based nanoplatforms for SDT are also discussed. Finally, various challenges and prospects for its further development and potential clinical translation are highlighted.


Subject(s)
Antineoplastic Agents , Neoplasms , Ultrasonic Therapy , Humans , Titanium , Ultrasonic Therapy/methods , Neoplasms/drug therapy , Antineoplastic Agents/therapeutic use , Combined Modality Therapy , Reactive Oxygen Species , Cell Line, Tumor
9.
Front Cell Infect Microbiol ; 12: 987683, 2022.
Article in English | MEDLINE | ID: mdl-36250046

ABSTRACT

Porphyromonas gingivalis is a major pathogenic bacterium involved in the pathogenesis of periodontitis. Citrullination has been reported as the underlying mechanism of the pathogenesis, which relies on the interplay between two virulence factors of the bacterium, namely gingipain R and the bacterial peptidyl arginine deiminase. Gingipain R cleaves host proteins to expose the C-terminal arginines for peptidyl arginine deiminase to citrullinate and generate citrullinated proteins. Apart from carrying out citrullination in the periodontium, the bacterium is found capable of citrullinating proteins present in the host synovial tissues, atherosclerotic plaques and neurons. Studies have suggested that both virulence factors are the key factors that trigger distal effects mediated by citrullination, leading to the development of some non-communicable diseases, such as rheumatoid arthritis, atherosclerosis, and Alzheimer's disease. Thus, inhibition of these virulence factors not only can mitigate periodontitis, but also can provide new therapeutic solutions for systematic diseases involving bacterial citrullination. Herein, we described both these proteins in terms of their unique structural conformations and biological relevance to different human diseases. Moreover, investigations of inhibitory actions on the enzymes are also enumerated. New approaches for identifying inhibitors for peptidyl arginine deiminase through drug repurposing and virtual screening are also discussed.


Subject(s)
Periodontitis , Porphyromonas gingivalis , Gingipain Cysteine Endopeptidases , Humans , Hydrolases , Periodontitis/microbiology , Protein-Arginine Deiminases/metabolism , Virulence Factors
10.
J Mater Chem B ; 10(39): 7905-7923, 2022 10 12.
Article in English | MEDLINE | ID: mdl-36102133

ABSTRACT

Degree of oxygenation is one of the important parameters governing various processes, including cell proliferation, angiogenesis, extracellular matrix production, and even combating the microbial burden at the wound site, all of which are essential for tissue function restoration and integrity. Inadequate oxygenation interrupts the normal healing process and delays patient recovery. The present article overviews the role of oxygen in the wound healing process and different oxygenation therapies that have been applied for healing dermal wounds. Furthermore, we critically assessed various challenges and opportunities in the near future for adequate and controlled oxygen delivery at the wounded site with minimal toxicity.


Subject(s)
Oxygen , Wound Healing , Cell Proliferation , Extracellular Matrix , Humans
11.
Int J Biol Macromol ; 220: 920-933, 2022 Nov 01.
Article in English | MEDLINE | ID: mdl-35987365

ABSTRACT

Non-healing wounds have long been the subject of scientific and clinical investigations. Despite breakthroughs in understanding the biology of delayed wound healing, only limited advances have been made in properly treating wounds. Recently, research into nucleic acids (NAs) such as small-interfering RNA (siRNA), microRNA (miRNA), plasmid DNA (pDNA), aptamers, and antisense oligonucleotides (ASOs) has resulted in the development of a latest therapeutic strategy for wound healing. In this regard, dendrimers, scaffolds, lipid nanoparticles, polymeric nanoparticles, hydrogels, and metal nanoparticles have all been explored as NA delivery techniques. However, the translational possibility of NA remains a substantial barrier. As a result, different NAs must be identified, and their distribution method must be optimized. This review explores the role of NA-based therapeutics in various stages of wound healing and provides an update on the most recent findings in the development of NA-based nanomedicine and biomaterials, which may offer the potential for the invention of novel therapies for this long-term condition. Further, the challenges and potential for miRNA-based techniques to be translated into clinical applications are also highlighted.


Subject(s)
Dendrimers , MicroRNAs , Nucleic Acids , Biocompatible Materials , DNA , Dendrimers/therapeutic use , Hydrogels , Liposomes , MicroRNAs/genetics , MicroRNAs/therapeutic use , Nanoparticles , Nucleic Acids/therapeutic use , Oligonucleotides, Antisense/genetics , Oligonucleotides, Antisense/therapeutic use , RNA, Small Interfering/genetics , RNA, Small Interfering/therapeutic use , Wound Healing
12.
Mol Biochem Parasitol ; 251: 111507, 2022 09.
Article in English | MEDLINE | ID: mdl-35870645

ABSTRACT

Starvation is always accompanied by an increase in the ratio of AMP/ATP followed by activation of AMPK. It is one of the sensors for cellular energy status and is highly conserved across various species. Its role in the stage differentiation process of protozoan species like Giardia, Plasmodium, Trypanosome, and Toxoplasma has been reported. Since Entamoeba undergoes encystation in glucose-starved conditions; it intrigued us to investigate the existence and role of AMPK during the differentiation of trophozoites to the cyst. By employing in silico approaches, we have identified an AMPK homologue which is denominated here as EiAMPK (AMPK-like protein in Entamoeba invadens). Sequence and structural analysis indicate that EiAMPK is sequentially and structurally similar to the AMPK alpha subunit of other organisms. The recombinant form of EiAMPK was functionally active and in accordance, its activity was inhibited by an AMPK-specific inhibitor (eg. Compound C). The increased expression of EiAMPK during different stresses indicated that EiAMPK is a stress-responsive gene. To further investigate, whether EiAMPK has any role in encystation, we employed RNAi-mediated gene silencing that demonstrated its active involvement in encystation. It is known that Entamoeba maintains a flow of glucose from the glycolytic pathway to chitin synthesis for cyst wall formation during encystation. It is conceivable that EiAMPK might have a command over such glucose metabolism. As anticipated, the chitin synthesis was found greatly inhibited in both EiAMPK knockdown and Compound C treated cells, indicating that EiAMPK regulates the cyst wall chitin synthesis.


Subject(s)
Entamoeba , AMP-Activated Protein Kinases/genetics , AMP-Activated Protein Kinases/metabolism , Adenylate Kinase/metabolism , Chitin , Entamoeba/genetics , Entamoeba/metabolism , Glucose/metabolism
13.
Materials (Basel) ; 15(1)2022 Jan 04.
Article in English | MEDLINE | ID: mdl-35009484

ABSTRACT

Nanozymes, a type of nanomaterial with enzyme-like properties, are a promising alternative to natural enzymes. In particular, transition metal dichalcogenides (TMDCs, with the general formula MX2, where M represents a transition metal and X is a chalcogen element)-based nanozymes have demonstrated exceptional potential in the healthcare and diagnostic sectors. TMDCs have different enzymatic properties due to their unique nano-architecture, high surface area, and semiconducting properties with tunable band gaps. Furthermore, the compatibility of TMDCs with various chemical or physical modification strategies provide a simple and scalable way to engineer and control their enzymatic activity. Here, we discuss recent advances made with TMDC-based nanozymes for biosensing and therapeutic applications. We also discuss their synthesis strategies, various enzymatic properties, current challenges, and the outlook for future developments in this field.

14.
Environ Sci Pollut Res Int ; 29(11): 16404-16417, 2022 Mar.
Article in English | MEDLINE | ID: mdl-34648166

ABSTRACT

The measurements and monitoring of 222Rn/220Rn have been of emerging interest in occupational environments particularly in radium/thorium handling facilities and environments with monazite deposits for the inhalation dosimetry. The performance of a flow-through Lucas scintillation cell (LSC) for long run 220Rn measurements, depends upon the exact distribution pattern of 220Rn and its decay products in the LSC which can vary with the design of inlet path and flow rates. In this work, the CFD technique has been used to study the concentration profiles of 220Rn and its decay products in LSC for varying flow rates and inlet needle lengths. The variation of alpha production efficiency (ηα) is computed and analyzed for each case; aiming to select the best operating range of parameters for the optimum performance of LSC for 220Rn measurements. It is seen that LSC can be operated in the flow rate ranging from 0.6 to 1 lpm with inlet needle length varying from 22.5 to 45 mm for improved sensitivity.


Subject(s)
Air Pollutants, Radioactive , Air Pollution, Indoor , Radiation Monitoring , Radon , Air Pollutants, Radioactive/analysis , Air Pollution, Indoor/analysis , Radon/analysis , Thorium/analysis
15.
Adv Sci (Weinh) ; 9(2): e2102678, 2022 01.
Article in English | MEDLINE | ID: mdl-34796680

ABSTRACT

Cancer is one of the top life-threatening dangers to the human survival, accounting for over 10 million deaths per year. Bioactive glasses have developed dramatically since their discovery 50 years ago, with applications that include therapeutics as well as diagnostics. A new system within the bioactive glass family, mesoporous bioactive glasses (MBGs), has evolved into a multifunctional platform, thanks to MBGs easy-to-functionalize nature and tailorable textural properties-surface area, pore size, and pore volume. Although MBGs have yet to meet their potential in tumor treatment and imaging in practice, recently research has shed light on the distinguished MBGs capabilities as promising theranostic systems for cancer imaging and therapy. This review presents research progress in the field of MBG applications in cancer diagnosis and therapy, including synthesis of MBGs, mechanistic overview of MBGs application in tumor diagnosis and drug monitoring, applications of MBGs in cancer therapy ( particularly, targeted delivery and stimuli-responsive nanoplatforms), and immunological profile of MBG-based nanodevices in reference to the development of novel cancer therapeutics.


Subject(s)
Glass/chemistry , Neoplasms/diagnosis , Neoplasms/therapy , Animals , Disease Models, Animal , Hyperthermia, Induced/methods , Mice , Nanomedicine/methods , Neoplasms/immunology , Photochemotherapy/methods , Photothermal Therapy/methods , Porosity
16.
Front Bioeng Biotechnol ; 9: 732130, 2021.
Article in English | MEDLINE | ID: mdl-34604190

ABSTRACT

In the last decades, biomedical research has significantly boomed in the academia and industrial sectors, and it is expected to continue to grow at a rapid pace in the future. An in-depth analysis of such growth is not trivial, given the intrinsic multidisciplinary nature of biomedical research. Nevertheless, technological advances are among the main factors which have enabled such progress. In this review, we discuss the contribution of two state-of-the-art technologies-namely biofabrication and organ-on-a-chip-in a selection of biomedical research areas. We start by providing an overview of these technologies and their capacities in fabricating advanced in vitro tissue/organ models. We then analyze their impact on addressing a range of current biomedical challenges. Ultimately, we speculate about their future developments by integrating these technologies with other cutting-edge research fields such as artificial intelligence and big data analysis.

17.
J Mater Chem B ; 9(37): 7608-7632, 2021 09 29.
Article in English | MEDLINE | ID: mdl-34586145

ABSTRACT

Nature's material systems during evolution have developed the ability to respond and adapt to environmental stimuli through the generation of complex structures capable of varying their functions across direction, distances and time. 3D printing technologies can recapitulate structural motifs present in natural materials, and efforts are currently being made on the technological side to improve printing resolution, shape fidelity, and printing speed. However, an intrinsic limitation of this technology is that printed objects are static and thus inadequate to dynamically reshape when subjected to external stimuli. In recent years, this issue has been addressed with the design and precise deployment of smart materials that can undergo a programmed morphing in response to a stimulus. The term 4D printing was coined to indicate the combined use of additive manufacturing, smart materials, and careful design of appropriate geometries. In this review, we report the recent progress in the design and development of smart materials that are actuated by different stimuli and their exploitation within additive manufacturing to produce biomimetic structures with important repercussions in different but interrelated biomedical areas.


Subject(s)
Printing, Three-Dimensional , Smart Materials/chemistry , Biomimetics , Drug Carriers/chemistry , Hydrogels/chemistry , Robotics , Stereolithography , Tissue Engineering , Wearable Electronic Devices
18.
Biodes Manuf ; 4(4): 689-716, 2021.
Article in English | MEDLINE | ID: mdl-34395032

ABSTRACT

Limitations of monolayer culture conditions have motivated scientists to explore new models that can recapitulate the architecture and function of human organs more accurately. Recent advances in the improvement of protocols have resulted in establishing three-dimensional (3D) organ-like architectures called 'organoids' that can display the characteristics of their corresponding real organs, including morphological features, functional activities, and personalized responses to specific pathogens. We discuss different organoid-based 3D models herein, which are classified based on their original germinal layer. Studies of organoids simulating the complexity of real tissues could provide novel platforms and opportunities for generating practical knowledge along with preclinical studies, including drug screening, toxicology, and molecular pathophysiology of diseases. This paper also outlines the key challenges, advantages, and prospects of current organoid systems.

19.
J Cell Mol Med ; 25(18): 8602-8614, 2021 09.
Article in English | MEDLINE | ID: mdl-34423899

ABSTRACT

Hepatocellular carcinoma (HCC), the most common type of liver cancer, is usually a latent and asymptomatic malignancy caused by different aetiologies, which is a result of various aberrant molecular heterogeneity and often diagnosed at advanced stages. The incidence and prevalence have significantly increased because of sedentary lifestyle, diabetes, chronic infection with hepatotropic viruses and exposure to aflatoxins. Due to advanced intra- or extrahepatic metastasis, recurrence is very common even after radical resection. In this paper, we highlighted novel therapeutic modalities, such as molecular-targeted therapies, targeted radionuclide therapies and epigenetic modification-based therapies. These topics are trending headlines and their combination with cell-based immunotherapies, and gene therapy has provided promising prospects for the future of HCC treatment. Moreover, a comprehensive overview of current and advanced therapeutic approaches is discussed and the advantages and limitations of each strategy are described. Finally, very recent and approved novel combined therapies and their promising results in HCC treatment have been introduced.


Subject(s)
Carcinoma, Hepatocellular/therapy , Combined Modality Therapy/methods , Immunotherapy/methods , Liver Neoplasms/therapy , Molecular Targeted Therapy/methods , Animals , Humans
20.
Mater Sci Eng C Mater Biol Appl ; 124: 112057, 2021 May.
Article in English | MEDLINE | ID: mdl-33947551

ABSTRACT

Annually increasing incidence of cardiac-related disorders and cardiac tissue's minimal regenerative capacity have motivated the researchers to explore effective therapeutic strategies. In the recent years, bioprinting technologies have witnessed a great wave of enthusiasm and have undergone steady advancements over a short period, opening the possibilities for recreating engineered functional cardiac tissue models for regenerative and diagnostic applications. With this perspective, the current review delineates recent developments in the sphere of engineered cardiac tissue fabrication, using traditional and advanced bioprinting strategies. The review also highlights different printing ink formulations, available cellular opportunities, and aspects of personalized medicines in the context of cardiac tissue engineering and bioprinting. On a concluding note, current challenges and prospects for further advancements are also discussed.


Subject(s)
Bioprinting , Heart , Ink , Printing, Three-Dimensional , Tissue Engineering
SELECTION OF CITATIONS
SEARCH DETAIL
...