Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Sci Rep ; 9(1): 13675, 2019 09 23.
Article in English | MEDLINE | ID: mdl-31548565

ABSTRACT

CD20 is a B-lymphocyte specific integral membrane protein, an activated-glycosylated phosphoprotein expressed on the surface of B-cells and a clinically validated target of monoclonal antibodies such as rituximab, ocrelizumab, ofatumumab and obinutuzumab in the treatment of all B cell lymphomas and leukemias as well as autoimmune diseases. Here, we report the extraction and purification of native CD20 from SUDHL4 and RAMOS cell lines. To improve the protein yield, we applied a calixarene-based detergent approach to solubilize, stabilize and purify native CD20 from HEK293 cells. Size Exclusion Chromatography (SEC) and Analytical Ultracentrifugation show that purified CD20 was non-aggregated and that CD20 oligomerization is concentration dependent. Negative stain electron microscopy and atomic force microscopy revealed homogenous populations of CD20. However, no defined structure could be observed. Interestingly, micellar solubilized and purified CD20 particles adopt uniformly confined nanodroplets which do not fuse and aggregate. Finally, purified CD20 could bind to rituximab and obinutuzumab as demonstrated by SEC, and Surface Plasmon Resonance (SPR). Specificity of binding was confirmed using CD20 antibody mutants to human B-cell lymphoma cells. The strategy described in this work will help investigate CD20 binding with newly developed antibodies and eventually help to optimize them. This approach may also be applicable to other challenging membrane proteins.


Subject(s)
Antibodies, Monoclonal, Humanized/metabolism , Antigens, CD20/metabolism , Rituximab/metabolism , Antigens, CD20/immunology , Cell Line , Humans
2.
Cell Chem Biol ; 26(11): 1573-1585.e10, 2019 11 21.
Article in English | MEDLINE | ID: mdl-31543461

ABSTRACT

Anti-silencing function 1 (ASF1) is a conserved H3-H4 histone chaperone involved in histone dynamics during replication, transcription, and DNA repair. Overexpressed in proliferating tissues including many tumors, ASF1 has emerged as a promising therapeutic target. Here, we combine structural, computational, and biochemical approaches to design peptides that inhibit the ASF1-histone interaction. Starting from the structure of the human ASF1-histone complex, we developed a rational design strategy combining epitope tethering and optimization of interface contacts to identify a potent peptide inhibitor with a dissociation constant of 3 nM. When introduced into cultured cells, the inhibitors impair cell proliferation, perturb cell-cycle progression, and reduce cell migration and invasion in a manner commensurate with their affinity for ASF1. Finally, we find that direct injection of the most potent ASF1 peptide inhibitor in mouse allografts reduces tumor growth. Our results open new avenues to use ASF1 inhibitors as promising leads for cancer therapy.


Subject(s)
Cell Cycle Proteins/metabolism , Drug Design , Molecular Chaperones/metabolism , Peptides/chemistry , Amino Acid Sequence , Animals , Binding Sites , Cell Cycle Checkpoints/drug effects , Cell Cycle Proteins/antagonists & inhibitors , Cell Line, Tumor , Cell Movement/drug effects , Cell Proliferation/drug effects , Epitopes/chemistry , Epitopes/metabolism , Female , Histones/chemistry , Histones/metabolism , Humans , Kinetics , Mice , Mice, Inbred BALB C , Molecular Chaperones/antagonists & inhibitors , Neoplasms/drug therapy , Neoplasms/pathology , Peptides/metabolism , Peptides/pharmacology , Peptides/therapeutic use , Thermodynamics , Transplantation, Homologous
3.
Sci Rep ; 7(1): 16452, 2017 11 28.
Article in English | MEDLINE | ID: mdl-29184062

ABSTRACT

KCC2 is a neuron specific K+-Cl- co-transporter that controls neuronal chloride homeostasis, and is critically involved in many neurological diseases including brain trauma, epilepsies, autism and schizophrenia. Despite significant accumulating data on the biology and electrophysiological properties of KCC2, structure-function relationships remain poorly understood. Here we used calixarene detergent to solubilize and purify wild-type non-aggregated and homogenous KCC2. Specific binding of inhibitor compound VU0463271 was demonstrated using surface plasmon resonance (SPR). Mass spectrometry revealed glycosylations and phosphorylations as expected from functional KCC2. We show by electron microscopy (EM) that KCC2 exists as monomers and dimers in solution. Monomers are organized into "head" and "core" domains connected by a flexible "linker". Dimers are asymmetrical and display a bent "S-shape" architecture made of four distinct domains and a flexible dimerization interface. Chemical crosslinking in reducing conditions shows that disulfide bridges are involved in KCC2 dimerization. Moreover, we show that adding a tag to the C-terminus is detrimental to KCC2 function. We postulate that the conserved KCC2 C-ter may be at the interface of dimerization. Taken together, our findings highlight the flexible multi-domain structure of KCC2 with variable anchoring points at the dimerization interface and an important C-ter extremity providing the first in-depth functional architecture of KCC2.

4.
eNeuro ; 4(4)2017.
Article in English | MEDLINE | ID: mdl-28785725

ABSTRACT

A plethora of neurological disorders are associated with alterations in the expression and localization of potassium-chloride cotransporter type 2 (KCC2), making KCC2 a critical player in neuronal function and an attractive target for therapeutic treatment. The activity of KCC2 is determined primarily by the rates of its surface insertion and internalization. Currently the domains of KCC2 dictating its trafficking and endocytosis are unknown. Here, using live-cell immunolabeling and biotinylation of KCC2 proteins expressed in murine neuroblastoma N2a cells, human embryonic kidney 293 cells, or primary cultures of rat hippocampal neurons, we identified a novel role for the intracellular N and C termini in differentially regulating KCC2 surface expression. We report that the N terminus is required for KCC2 insertion into the plasma membrane, whereas the C terminus is critical for the membrane stability of KCC2. Our results provide novel insights into the structure-function role of specific KCC2 domains and open perspectives in exploring structural organization of this protein.


Subject(s)
Cell Membrane/metabolism , Symporters/metabolism , Animals , Biotinylation , Cell Line, Tumor , HEK293 Cells , Hippocampus/metabolism , Humans , Intracellular Space , Mice , Mutation , Protein Stability , Rats, Wistar , Structure-Activity Relationship , Symporters/genetics , K Cl- Cotransporters
5.
Sci Rep ; 7: 41751, 2017 02 08.
Article in English | MEDLINE | ID: mdl-28176812

ABSTRACT

Most membrane proteins studies require the use of detergents, but because of the lack of a general, accurate and rapid method to quantify them, many uncertainties remain that hamper proper functional and structural data analyses. To solve this problem, we propose a method based on matrix-assisted laser desorption/ionization mass spectrometry (MALDI-TOF MS) that allows quantification of pure or mixed detergents in complex with membrane proteins. We validated the method with a wide variety of detergents and membrane proteins. We automated the process, thereby allowing routine quantification for a broad spectrum of usage. As a first illustration, we show how to obtain information of the amount of detergent in complex with a membrane protein, essential for liposome or nanodiscs reconstitutions. Thanks to the method, we also show how to reliably and easily estimate the detergent corona diameter and select the smallest size, critical for favoring protein-protein contacts and triggering/promoting membrane protein crystallization, and to visualize the detergent belt for Cryo-EM studies.


Subject(s)
Detergents/chemistry , Membrane Proteins/chemistry , Detergents/metabolism , Liposomes , Membrane Proteins/metabolism , Micelles , Models, Molecular , Reproducibility of Results , Sensitivity and Specificity , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/standards
6.
Anal Biochem ; 517: 40-49, 2017 Jan 15.
Article in English | MEDLINE | ID: mdl-27847172

ABSTRACT

Membrane proteins play crucial role in many cellular processes including cell adhesion, cell-cell communication, signal transduction and transport. To better understand the molecular basis of such central biological machines and in order to specifically study their biological and medical role, it is necessary to extract them from their membrane environment. To do so, it is challenging to find the best solubilization condition. Here we describe, a systematic screening method called BMSS (Biotinylated Membranes Solubilization & Separation) that allow screening 96 conditions at once. Streptavidine magnetic beads are used to separate solubilized proteins from remaining biotinylated membranes after solubilization. Relative quantification of dot blots help to select the best conditions to be confirmed by classical ultra-centrifugation and western blot. Classical detergents with different physical-chemical characteristics, novel calixarene based detergents and combination of both, were used for solubilization trials to obtain broad spectrum of conditions. Here, we show the application of BMSS to discover solubilization conditions of a GPCR target (MP-A) and a transporter (MP-B). The selected conditions allowed the solubilization and purification of non-aggregated and homogenous native membrane proteins A and B. Taken together, BMSS represent a rapid, reproducible and high throughput assessment of solubilization toward biochemical/functional characterization, biophysical screening and structural investigations of membrane proteins of high biological and medical relevance.


Subject(s)
Cell Membrane/chemistry , Detergents/chemistry , Receptors, G-Protein-Coupled/chemistry , Humans , Solubility
7.
Sci Rep ; 6: 19725, 2016 Jan 27.
Article in English | MEDLINE | ID: mdl-26813996

ABSTRACT

Translationally Controlled Tumor Protein (TCTP) is anti-apoptotic, key in development and cancer, however without the typical Bcl2 family members' structure. Here we report that TCTP contains a BH3-like domain and forms heterocomplexes with Bcl-xL. The crystal structure of a Bcl-xL deletion variant-TCTP11-31 complex reveals that TCTP refolds in a helical conformation upon binding the BH3-groove of Bcl-xL, although lacking the h1-subregion interaction. Experiments using in vitro-vivo reconstituted systems and TCTP(+/-) mice indicate that TCTP activates the anti-apoptotic function of Bcl-xL, in contrast to all other BH3-proteins. Replacing the non-conserved h1 of TCTP by that of Bax drastically increases the affinity of this hybrid for Bcl-xL, modifying its biological properties. This work reveals a novel class of BH3-proteins potentiating the anti-apoptotic function of Bcl-xL.


Subject(s)
Biomarkers, Tumor/metabolism , Protein Interaction Domains and Motifs , bcl-X Protein/metabolism , Amino Acid Sequence , Animals , Apoptosis , BH3 Interacting Domain Death Agonist Protein/metabolism , Biomarkers, Tumor/chemistry , Cell Membrane Permeability , Mice , Models, Molecular , Multiprotein Complexes/metabolism , Protein Binding , Protein Conformation , Protein Multimerization , Tumor Protein, Translationally-Controlled 1 , bcl-2-Associated X Protein/metabolism , bcl-X Protein/chemistry
8.
Nat Methods ; 11(3): 297-300, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24441935

ABSTRACT

We present an automated microfluidic platform that performs multisecond observation of single molecules with millisecond time resolution while bypassing the need for immobilization procedures. With this system, we confine biomolecules to a thin excitation field by reversibly collapsing microchannels to nanochannels. We demonstrate the power of our method by studying a variety of complex nucleic acid and protein systems, including DNA Holliday junctions, nucleosomes and human transglutaminase 2.


Subject(s)
Fluorescence Resonance Energy Transfer , Microfluidics/instrumentation , Microfluidics/methods , Automation , GTP-Binding Proteins/genetics , Humans , Models, Molecular , Protein Glutamine gamma Glutamyltransferase 2 , Transglutaminases/genetics
9.
Biochemistry ; 49(20): 4297-9, 2010 May 25.
Article in English | MEDLINE | ID: mdl-20415454

ABSTRACT

A new footprinting method for mapping protein interactions has been developed, using tritium as a radioactive label. As residues involved in an interaction are less labeled when the complex is formed, they can be identified via comparison of the tritium incorporation of each residue of the bound protein with that of the unbound one. Application of this footprinting method to the complex formed by the histone H3 fragment H3(122-135) and the protein hAsf1A(1-156) afforded data in good agreement with NMR results.


Subject(s)
Isotope Labeling/methods , Protein Footprinting/methods , Proteins/metabolism , Amino Acid Sequence , Efficiency , Histones/chemistry , Histones/metabolism , Humans , Models, Biological , Nuclear Magnetic Resonance, Biomolecular , Nucleosomes/chemistry , Nucleosomes/metabolism , Peptide Fragments/chemistry , Peptide Fragments/metabolism , Protein Binding , Protein Interaction Mapping/methods , Proteins/chemistry , Sensitivity and Specificity , Tritium
10.
Mol Cell Biol ; 28(11): 3672-85, 2008 Jun.
Article in English | MEDLINE | ID: mdl-18378699

ABSTRACT

Histone chaperones have been implicated in nucleosome assembly and disassembly as well as histone modification. ASF1 is a highly conserved histone H3/H4 chaperone that synergizes in vitro with two other histone chaperones, chromatin assembly factor 1 (CAF-1) and histone repression A factor (HIRA), in DNA synthesis-coupled and DNA synthesis-independent nucleosome assembly. Here, we identify mutants of histones H3.1 and H3.3 that are unable to interact with human ASF1A and ASF1B isoforms but that are still competent to bind CAF-1 and HIRA, respectively. We show that these mutant histones are inefficiently deposited into chromatin in vivo. Furthermore, we found that both ASF1A and ASF1B participate in the DNA synthesis-independent deposition of H3.3 in HeLa cells, thus highlighting an unexpected role for ASF1B in this pathway. This pathway does not require interaction of ASF1 with HIRA. We provide the first direct determination that ASF1A and ASF1B play a role in the efficiency of nucleosome assembly in vivo in human cells.


Subject(s)
Cell Cycle Proteins/metabolism , Histones/metabolism , Molecular Chaperones/metabolism , Nucleosomes/metabolism , Arginine/metabolism , Cell Cycle Proteins/genetics , Chromatin/metabolism , G1 Phase , HeLa Cells , Histone Chaperones , Histones/genetics , Humans , Molecular Chaperones/genetics , Mutation , S Phase , Transcription Factors/metabolism
11.
Structure ; 15(2): 191-9, 2007 Feb.
Article in English | MEDLINE | ID: mdl-17292837

ABSTRACT

Asf1 is a histone chaperone that favors histone H3/H4 assembly and disassembly. We solved the structure of the conserved domain of human ASF1A in complex with the C-terminal helix of histone H3 using nuclear magnetic resonance spectroscopy. This structure is fully compatible with an association of ASF1 with the heterodimeric form of histones H3/H4. In our model, ASF1 substitutes for the second H3/H4 heterodimer that is normally found in heterotetrameric H3/H4 complexes. This result constitutes an essential step in the fundamental understanding of the mechanisms of nucleosome assembly by histone chaperones. Point mutations that perturb the Asf1/histone interface were designed from the structure. The decreased binding affinity of the Asf1-H3/H4 complex correlates with decreased levels of H3-K56 acetylation and phenotypic defects in vivo.


Subject(s)
Cell Cycle Proteins/chemistry , Molecular Chaperones/chemistry , Acetylation , Cell Cycle Proteins/genetics , Cells, Cultured , Dimerization , Histones/chemistry , Humans , Magnetic Resonance Spectroscopy , Molecular Chaperones/genetics , Point Mutation , Protein Structure, Secondary , Protein Structure, Tertiary
12.
Proc Natl Acad Sci U S A ; 102(17): 5975-80, 2005 Apr 26.
Article in English | MEDLINE | ID: mdl-15840725

ABSTRACT

Asf1 is a conserved histone chaperone implicated in nucleosome assembly, transcriptional silencing, and the cellular response to DNA damage. We solved the NMR solution structure of the N-terminal functional domain of the human Asf1a isoform, and we identified by NMR chemical shift mapping a surface of Asf1a that binds the C-terminal helix of histone H3. This binding surface forms a highly conserved hydrophobic groove surrounded by charged residues. Mutations within this binding site decreased the affinity of Asf1a for the histone H3/H4 complex in vitro, and the same mutations in the homologous yeast protein led to transcriptional silencing defects, DNA damage sensitivity, and thermosensitive growth. We have thus obtained direct experimental evidence of the mode of binding between a histone and one of its chaperones and genetic data suggesting that this interaction is important in both the DNA damage response and transcriptional silencing.


Subject(s)
Cell Cycle Proteins/chemistry , Cell Cycle Proteins/metabolism , Histones/chemistry , Histones/metabolism , Animals , Binding Sites , Chickens , Glutathione Transferase/chemistry , Glutathione Transferase/metabolism , Humans , Magnetic Resonance Spectroscopy , Models, Molecular , Molecular Chaperones , Mutagenesis, Site-Directed , Protein Conformation , Protein Structure, Secondary , Recombinant Fusion Proteins/chemistry , Recombinant Proteins/chemistry , Recombinant Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...