Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
Add more filters










Publication year range
1.
J Med Chem ; 66(1): 149-169, 2023 01 12.
Article in English | MEDLINE | ID: mdl-36533617

ABSTRACT

Hyperactivation of mTOR kinase by mutations in the PI3K/mTOR pathway or by crosstalk with other mutant cancer drivers, such as RAS, is a feature of many tumors. Multiple allosteric inhibitors of mTORC1 and orthosteric dual inhibitors of mTORC1 and mTORC2 have been developed as anticancer drugs, but their clinical utility has been limited. To address these limitations, we have developed a novel class of "bi-steric inhibitors" that interact with both the orthosteric and the allosteric binding sites in order to deepen the inhibition of mTORC1 while also preserving selectivity for mTORC1 over mTORC2. In this report, we describe the discovery and preclinical profile of the development candidate RMC-5552 and the in vivo preclinical tool compound RMC-6272. We also present evidence that selective inhibition of mTORC1 in combination with covalent inhibition of KRASG12C shows increased antitumor activity in a preclinical model of KRASG12C mutant NSCLC that exhibits resistance to KRASG12C inhibitor monotherapy.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Humans , Mechanistic Target of Rapamycin Complex 1 , Proto-Oncogene Proteins p21(ras)/metabolism , Cell Proliferation , TOR Serine-Threonine Kinases , Mechanistic Target of Rapamycin Complex 2 , Carcinoma, Non-Small-Cell Lung/drug therapy , Lung Neoplasms/drug therapy , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , Protein Kinase Inhibitors/chemistry , Cell Line, Tumor
3.
Nat Chem Biol ; 17(10): 1065-1074, 2021 10.
Article in English | MEDLINE | ID: mdl-34168367

ABSTRACT

The clinical benefits of pan-mTOR active-site inhibitors are limited by toxicity and relief of feedback inhibition of receptor expression. To address these limitations, we designed a series of compounds that selectively inhibit mTORC1 and not mTORC2. These 'bi-steric inhibitors' comprise a rapamycin-like core moiety covalently linked to an mTOR active-site inhibitor. Structural modification of these components modulated their affinities for their binding sites on mTOR and the selectivity of the bi-steric compound. mTORC1-selective compounds potently inhibited 4EBP1 phosphorylation and caused regressions of breast cancer xenografts. Inhibition of 4EBP1 phosphorylation was sufficient to block cancer cell growth and was necessary for maximal antitumor activity. At mTORC1-selective doses, these compounds do not alter glucose tolerance, nor do they relieve AKT-dependent feedback inhibition of HER3. Thus, in preclinical models, selective inhibitors of mTORC1 potently inhibit tumor growth while causing less toxicity and receptor reactivation as compared to pan-mTOR inhibitors.


Subject(s)
Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Drug Design , Mechanistic Target of Rapamycin Complex 1/antagonists & inhibitors , Breast Neoplasms/drug therapy , Cell Line, Tumor , Female , Gene Expression Regulation/drug effects , Humans , Mechanistic Target of Rapamycin Complex 1/genetics , Mechanistic Target of Rapamycin Complex 1/metabolism , Structure-Activity Relationship
5.
ChemMedChem ; 14(16): 1560-1572, 2019 08 20.
Article in English | MEDLINE | ID: mdl-31283109

ABSTRACT

UDP-3-O-(R-3-hydroxymyristoyl)-N-acetylglucosamine deacetylase (LpxC) is a Zn2+ deacetylase that is essential for the survival of most pathogenic Gram-negative bacteria. ACHN-975 (N-((S)-3-amino-1-(hydroxyamino)-3-methyl-1-oxobutan-2-yl)-4-(((1R,2R)-2-(hydroxymethyl)cyclopropyl)buta-1,3-diyn-1-yl)benzamide) was the first LpxC inhibitor to reach human clinical testing and was discovered to have a dose-limiting cardiovascular toxicity of transient hypotension without compensatory tachycardia. Herein we report the effort beyond ACHN-975 to discover LpxC inhibitors optimized for enzyme potency, antibacterial activity, pharmacokinetics, and cardiovascular safety. Based on its overall profile, compound 26 (LPXC-516, (S)-N-(2-(hydroxyamino)-1-(3-methoxy-1,1-dioxidothietan-3-yl)-2-oxoethyl)-4-(6-hydroxyhexa-1,3-diyn-1-yl)benzamide) was chosen for further development. A phosphate prodrug of 26 was developed that provided a solubility of >30 mg mL-1 for parenteral administration and conversion into the active drug with a t1/2 of approximately two minutes. Unexpectedly, and despite our optimization efforts, the prodrug of 26 still possesses a therapeutic window insufficient to support further clinical development.


Subject(s)
Amidohydrolases/antagonists & inhibitors , Anti-Bacterial Agents/pharmacology , Diynes/pharmacology , Enzyme Inhibitors/pharmacology , Heart/drug effects , Hydroxamic Acids/pharmacology , Animals , Anti-Bacterial Agents/chemical synthesis , Anti-Bacterial Agents/pharmacokinetics , Anti-Bacterial Agents/toxicity , Bacterial Proteins/antagonists & inhibitors , Cardiotoxicity , Diynes/chemical synthesis , Diynes/pharmacokinetics , Diynes/toxicity , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/pharmacokinetics , Enzyme Inhibitors/toxicity , Hydroxamic Acids/chemical synthesis , Hydroxamic Acids/pharmacokinetics , Hydroxamic Acids/toxicity , Male , Molecular Structure , Prodrugs/chemical synthesis , Prodrugs/pharmacokinetics , Prodrugs/pharmacology , Prodrugs/toxicity , Pseudomonas aeruginosa/drug effects , Rats, Sprague-Dawley , Structure-Activity Relationship
6.
Bioorg Med Chem Lett ; 27(23): 5310-5321, 2017 12 01.
Article in English | MEDLINE | ID: mdl-29102393

ABSTRACT

Previously we reported the results from an effort to improve Gram-negative antibacterial activity in the oxazolidinone class of antibiotics via a systematic medicinal chemistry campaign focused entirely on C-ring modifications. In that series we set about testing if the efflux and permeation barriers intrinsic to the outer membrane of Escherichia coli could be rationally overcome by designing analogs to reside in specific property limits associated with Gram-negative activity: i) low MW (<400), ii) high polarity (clogD7.4 <1), and iii) zwitterionic character at pH 7.4. Indeed, we observed that only analogs residing within these limits were able to overcome these barriers. Herein we report the results from a parallel effort where we explored structural changes throughout all three rings in the scaffold for the same purpose. Compounds were tested against a diagnostic MIC panel of Escherichia coli and Staphylococcus aureus strains to determine the impact of combining structural modifications in overcoming the OM barriers and in bridging the potency gap between the species. The results demonstrated that distributing the charge-carrying moieties across two rings was also beneficial for avoidance of the outer membrane barriers. Importantly, analysis of the structure-permeation relationship (SPR) obtained from this and the prior study indicated that in addition to MW, polarity, and zwitterionic character, having ≤4 rotatable bonds is also associated with evasion of the OM barriers. These combined results provide the medicinal chemist with a framework and strategy for overcoming the OM barriers in GNB in antibacterial drug discovery efforts.


Subject(s)
Anti-Bacterial Agents/pharmacology , Drug Design , Escherichia coli/drug effects , Oxazolidinones/pharmacology , Staphylococcus aureus/drug effects , Anti-Bacterial Agents/chemical synthesis , Anti-Bacterial Agents/chemistry , Dose-Response Relationship, Drug , Escherichia coli/cytology , Microbial Sensitivity Tests , Molecular Structure , Oxazolidinones/chemical synthesis , Oxazolidinones/chemistry , Permeability/drug effects , Staphylococcus aureus/cytology , Structure-Activity Relationship
7.
ACS Infect Dis ; 2(6): 405-26, 2016 06 10.
Article in English | MEDLINE | ID: mdl-27627629

ABSTRACT

Novel antibacterials with activity against the Gram-negative bacteria associated with nosocomial infections, including Escherichia coli and other Enterobacteriaceae, are urgently needed due to the increasing prevalence of multidrug-resistant strains. A major obstacle that has stalled progress on nearly all small-molecule classes with potential for activity against these species has been achieving sufficient whole-cell activity, a difficult challenge due to the formidable outer membrane and efflux barriers intrinsic to these species. Using a set of compound design principles derived from available information relating physicochemical properties to Gram-negative entry or activity, we synthesized and evaluated a focused library of oxazolidinone analogues, a currently narrow spectrum class of antibacterials active only against Gram-positive bacteria. In this series, we have explored the effectiveness for improving Gram-negative activity by identifying and combining beneficial structural modifications in the C-ring region. We have found polar and/or charge-carrying modifications that, when combined in hybrid C-ring analogues, appear to largely overcome the efflux and/or permeability barriers, resulting in improved Gram-negative activity. In particular, those analogues least effected by efflux and the permeation barrier had significant zwitterionic character.


Subject(s)
Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Escherichia coli/drug effects , Gram-Negative Bacteria/drug effects , Oxazolidinones/chemistry , Oxazolidinones/pharmacology , Anti-Bacterial Agents/chemical synthesis , Escherichia coli/physiology , Escherichia coli Infections/drug therapy , Escherichia coli Infections/microbiology , Gram-Negative Bacterial Infections/drug therapy , Gram-Negative Bacterial Infections/microbiology , Humans , Microbial Sensitivity Tests , Molecular Structure , Structure-Activity Relationship
8.
ACS Chem Biol ; 9(9): 2067-73, 2014 Sep 19.
Article in English | MEDLINE | ID: mdl-25019242

ABSTRACT

Aminoglycoside antibiotics are pseudosaccharides decorated with ammonium groups that are critical for their potent broad-spectrum antibacterial activity. Despite over three decades of speculation whether or not modulation of pKa is a viable strategy to curtail aminoglycoside kidney toxicity, there is a lack of methods to systematically probe amine-RNA interactions and resultant cytotoxicity trends. This study reports the first series of potent aminoglycoside antibiotics harboring fluorinated N1-hydroxyaminobutyryl acyl (HABA) appendages for which fluorine-RNA contacts are revealed through an X-ray cocrystal structure within the RNA A-site. Cytotoxicity in kidney-derived cells was significantly reduced for the derivative featuring our novel ß,ß-difluoro-HABA group, which masks one net charge by lowering the pKa without compromising antibacterial potency. This novel side-chain assists in evasion of aminoglycoside-modifying enzymes, and it can be easily transferred to impart these properties onto any number of novel analogs.


Subject(s)
Aminoglycosides/chemistry , Aminoglycosides/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Neomycin/analogs & derivatives , Aminoglycosides/toxicity , Anti-Bacterial Agents/chemical synthesis , Anti-Bacterial Agents/toxicity , Cell Line/drug effects , Chemistry Techniques, Synthetic , Crystallography, X-Ray , Drug Evaluation, Preclinical/methods , Drug Resistance, Bacterial/drug effects , Humans , Kidney/cytology , Kidney/drug effects , Microbial Sensitivity Tests , Molecular Structure , RNA/chemistry , RNA/metabolism , Structure-Activity Relationship
9.
Bioorg Med Chem Lett ; 24(12): 2625-30, 2014 Jun 15.
Article in English | MEDLINE | ID: mdl-24813741

ABSTRACT

A series of potent ß2-adrenoceptor agonists incorporating a biarylamine secondary binding group was identified. The previously reported milveterol (5), identified by a multivalent approach and containing a typical ß2-agonist primary binding group linked via a phenethylamine linker to a hydrophilic secondary binding group, served as an initiation point. A more hydrophobic set of secondary binding groups was explored, prepared rapidly from a common intermediate by Buchwald-Hartwig amination. TD-5471 (25), a potent and selective full agonist of the human ß2-adrenoceptor, was identified as the most promising agent. It is potent, with slow onset in an in vitro guinea pig trachea model and shows a dose-dependent and long duration of action in an in vivo guinea pig model of bronchoprotection. TD-5471 is structurally differentiated from milveterol and its long duration of action is consistent with a correlation with hydrophobicity observed in other long-acting ß2-agonist discovery programs.


Subject(s)
Adrenergic beta-2 Receptor Agonists/chemical synthesis , Amines/chemical synthesis , Drug Design , Adrenergic beta-2 Receptor Agonists/chemistry , Amines/chemistry , Animals , Disease Models, Animal , Dose-Response Relationship, Drug , Guinea Pigs , Humans , Lung Diseases, Obstructive/drug therapy , Molecular Structure
10.
Bioorg Med Chem Lett ; 23(5): 1228-31, 2013 Mar 01.
Article in English | MEDLINE | ID: mdl-23374868

ABSTRACT

A novel series of CCR1 antagonists based on the 1-(4-phenylpiperazin-1-yl)-2-(1H-pyrazol-1-yl)ethanone scaffold was identified by screening a compound library utilizing CCR1-expressing human THP-1 cells. SAR studies led to the discovery of the highly potent and selective CCR1 antagonist 14 (CCR1 binding IC(50)=4 nM using [(125)I]-CCL3 as the chemokine ligand). Compound 14 displayed promising pharmacokinetic and toxicological profiles in preclinical species.


Subject(s)
Piperazines/pharmacology , Pyrazoles/pharmacology , Receptors, CCR1/antagonists & inhibitors , Cell Line , Humans , Piperazines/chemistry , Pyrazoles/chemistry , Receptors, CCR1/metabolism , Structure-Activity Relationship
11.
Antimicrob Agents Chemother ; 55(4): 1728-33, 2011 Apr.
Article in English | MEDLINE | ID: mdl-21282439

ABSTRACT

Aminoglycosides are broad-spectrum antibiotics with particular clinical utility against life-threatening infections. As resistance to antibiotics, including aminoglycosides, continues to grow, there is a need for new and effective antimicrobial agents. ACHN-490 is a novel aminoglycoside in clinical development with activity against multidrug-resistant Gram-negative and select Gram-positive pathogens. Here we assess the in vivo efficacy of ACHN-490 against a variety of common pathogens in two murine models: the septicemia and neutropenic thigh models. When its activity against a gentamicin-susceptible strain of Escherichia coli was tested in the septicemia model, ACHN-490 improved 7-day survival with a dose-response profile similar to that of gentamicin, with 100% survival seen at doses of 1.6 mg/kg of body weight and above. In animals infected with a gentamicin-susceptible strain of Pseudomonas aeruginosa, treatment with either ACHN-490 or gentamicin led to 100% survival at doses of 16 mg/kg and above in the septicemia model. ACHN-490 was also effective in the neutropenic thigh model, reducing multidrug-resistant Enterobacteriaceae family and methicillin-resistant Staphylococcus aureus strains, as well as broadly susceptible strains, to static levels with dose-dependent activity. Against gentamicin-sensitive Enterobacteriaceae and methicillin-resistant S. aureus, the efficacy of ACHN-490 was comparable to that of gentamicin. However, gentamicin-resistant Enterobacteriaceae strains and those harboring the Klebsiella pneumoniae carbapenemase responded to ACHN-490 but not gentamicin, with static doses ranging from 12 mg/kg to 64 mg/kg for ACHN-490. These results suggest that ACHN-490 has the potential to become a clinically useful agent against drug-resistant pathogens, including Enterobacteriaceae, P. aeruginosa, and methicillin-resistant S. aureus, and support further development of this promising novel aminoglycoside.


Subject(s)
Aminoglycosides/therapeutic use , Aminoglycosides/pharmacology , Animals , Escherichia coli/drug effects , Escherichia coli/pathogenicity , Klebsiella Infections/drug therapy , Klebsiella pneumoniae/drug effects , Klebsiella pneumoniae/pathogenicity , Male , Methicillin-Resistant Staphylococcus aureus/drug effects , Methicillin-Resistant Staphylococcus aureus/pathogenicity , Mice , Microbial Sensitivity Tests , Neutropenia/drug therapy , Neutropenia/microbiology , Pseudomonas aeruginosa/drug effects , Pseudomonas aeruginosa/pathogenicity , Sepsis/drug therapy , Sepsis/microbiology , Thigh/pathology
12.
ACS Med Chem Lett ; 2(12): 924-8, 2011 Dec 08.
Article in English | MEDLINE | ID: mdl-24900282

ABSTRACT

Deoxygenation of the diol groups in rings A and D of neomycin in combination with the introduction of an N1-(l)-HABA group in the 2-deoxystreptamine subunit (ring B) leads to a novel and potent antibiotic (1) with activity against strains of S. aureus carrying known aminoglycoside resistance determinants, as well as against an extended panel of Methicillin-resistant S. aureus isolates (n = 50). Antibiotic 1 displayed >64 fold improvement in MIC50 and MIC90 against this MRSA collection when compared to the clinically relevant aminoglycosides amikacin and gentamicin. The synthesis was achieved in six steps and 15% overall yield.

13.
Antimicrob Agents Chemother ; 54(11): 4636-42, 2010 Nov.
Article in English | MEDLINE | ID: mdl-20805391

ABSTRACT

ACHN-490 is a neoglycoside, or "next-generation" aminoglycoside (AG), that has been identified as a potentially useful agent to combat drug-resistant bacteria emerging in hospitals and health care facilities around the world. A focused medicinal chemistry campaign produced a collection of over 400 sisomicin analogs from which ACHN-490 was selected. We tested ACHN-490 against two panels of Gram-negative and Gram-positive pathogens, many of which harbored AG resistance mechanisms. Unlike legacy AGs, ACHN-490 was active against strains expressing known AG-modifying enzymes, including the three most common such enzymes found in Enterobacteriaceae. ACHN-490 inhibited the growth of AG-resistant Enterobacteriaceae (MIC(90), ≤4 µg/ml), with the exception of Proteus mirabilis and indole-positive Proteae (MIC(90), 8 µg/ml and 16 µg/ml, respectively). ACHN-490 was more active alone in vitro against Pseudomonas aeruginosa and Acinetobacter baumannii isolates with AG-modifying enzymes than against those with altered permeability/efflux. The MIC(90) of ACHN-490 against AG-resistant staphylococci was 2 µg/ml. Due to its promising in vitro and in vivo profiles, ACHN-490 has been advanced into clinical development as a new antibacterial agent.


Subject(s)
Anti-Bacterial Agents/chemical synthesis , Anti-Bacterial Agents/pharmacology , Sisomicin/analogs & derivatives , Acinetobacter baumannii/drug effects , Anti-Bacterial Agents/chemistry , Enterobacteriaceae/drug effects , Microbial Sensitivity Tests , Molecular Structure , Proteus mirabilis/drug effects , Pseudomonas aeruginosa/drug effects , Sisomicin/chemical synthesis , Sisomicin/chemistry , Sisomicin/pharmacology
14.
Antimicrob Agents Chemother ; 53(10): 4504-7, 2009 Oct.
Article in English | MEDLINE | ID: mdl-19770287

ABSTRACT

The in vitro activity of ACHN-490, a novel aminoglycoside ("neoglycoside"), was evaluated against 102 multidrug-resistant (MDR) Klebsiella pneumoniae strains, including a subset of 25 strains producing the KPC carbapenemase. MIC50 values for gentamicin, tobramycin, and amikacin were 8 microg/ml, 32 microg/ml, and 2 microg/ml, respectively; MIC90 values for the same antimicrobials were > or = 64 microg/ml, > or = 64 microg/ml, and 32 microg/ml, respectively. ACHN-490 showed an MIC50 of 0.5 microg/ml and an MIC90 of 1 microg/ml, which are significantly lower than those of comparator aminoglycosides. ACHN-490 represents a promising aminoglycoside for the treatment of MDR K. pneumoniae isolates, including those producing KPC beta-lactamase.


Subject(s)
Aminoglycosides/pharmacology , Anti-Bacterial Agents/pharmacology , Klebsiella pneumoniae/drug effects , Aminoglycosides/chemistry , Anti-Bacterial Agents/chemistry , Drug Resistance, Multiple, Bacterial , Microbial Sensitivity Tests , Molecular Structure
15.
J Antibiot (Tokyo) ; 61(10): 595-602, 2008 Oct.
Article in English | MEDLINE | ID: mdl-19168973

ABSTRACT

The design, synthesis and antibacterial activity of novel glycopeptide/beta-lactam heterodimers is reported. Employing a multivalent approach to drug discovery, vancomycin and cephalosporin synthons, A and B respectively, were chemically linked to yield heterodimer antibiotics. These novel compounds were designed to inhibit Gram-positive bacterial cell wall biosynthesis by simultaneously targeting the principal cellular targets of both glycopeptides and beta-lactams. The antibiotics 8a-f displayed remarkable potency against a wide range of Gram-positive organisms including methicillin-resistant Staphylococcus aureus (MRSA). Compound 8e demonstrated excellent bactericidal activity against MRSA (ATCC 33591) and initial evidence supports a multivalent mechanism of action for this important new class of antibiotic.


Subject(s)
Anti-Bacterial Agents/chemical synthesis , Anti-Bacterial Agents/pharmacology , Drug Discovery/methods , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/classification , Cell Wall/drug effects , Drug Design , Glycopeptides/chemical synthesis , Glycopeptides/chemistry , Glycopeptides/pharmacology , Gram-Positive Bacteria/drug effects , Methicillin-Resistant Staphylococcus aureus/drug effects , Microbial Sensitivity Tests , Molecular Structure , beta-Lactams/chemical synthesis , beta-Lactams/chemistry , beta-Lactams/pharmacology
16.
J Antibiot (Tokyo) ; 61(10): 603-14, 2008 Oct.
Article in English | MEDLINE | ID: mdl-19168974

ABSTRACT

Further investigations towards novel glycopeptide/beta-lactam heterodimers are reported. Employing a multivalent approach to drug discovery, vancomycin and cephalosporin synthons, 4, 2, 5 and 10, 18, 25 respectively, were chemically linked to yield heterodimer antibiotics. These novel compounds were designed to inhibit Gram-positive bacterial cell wall biosynthesis by simultaneously targeting the principal cellular targets of both glycopeptides and beta-lactams. The positional attachment of both the vancomycin and the cephalosporin central cores has been explored and the SAR is reported. This novel class of bifunctional antibiotics 28-36 all displayed remarkable potency against a wide range of Gram-positive organisms, including methicillin-resistant Staphylococcus aureus (MRSA). A subset of compounds, 29, 31 and 35 demonstrated excellent bactericidal activity against MRSA (ATCC 33591) and 31 and 35 also exhibited superb in vivo efficacy in a mouse model of MRSA infection. As a result of this work compound 35 was selected as a clinical candidate, TD-1792.


Subject(s)
Anti-Bacterial Agents/chemical synthesis , Anti-Bacterial Agents/pharmacology , Cephalosporins/chemical synthesis , Cephalosporins/pharmacology , Drug Discovery/methods , Glycopeptides/chemical synthesis , Glycopeptides/pharmacology , beta-Lactams/chemical synthesis , beta-Lactams/pharmacology , Animals , Anti-Bacterial Agents/chemistry , Cephalosporins/chemistry , Dimerization , Drug Design , Female , Glycopeptides/chemistry , Gram-Positive Bacteria/drug effects , Magnetic Resonance Spectroscopy , Methicillin-Resistant Staphylococcus aureus/drug effects , Mice , Microbial Sensitivity Tests , Molecular Structure , beta-Lactams/chemistry
18.
Bioorg Med Chem Lett ; 13(17): 2903-6, 2003 Sep 01.
Article in English | MEDLINE | ID: mdl-14611854

ABSTRACT

A series of acyclic, truncated microcystin analogues, comprised of the dienic beta-amino acid (Adda) and up to four additional amino acids characteristic of the parent toxin, was synthesized and screened for activity as inhibitors of PP1 and PP2A. Despite a recent report to the contrary for a microcystin-derived tetrapeptide degradation product, none approaches the potency of microcystin itself.


Subject(s)
Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Peptides, Cyclic/chemistry , Peptides, Cyclic/pharmacology , Phosphoprotein Phosphatases/antagonists & inhibitors , Bacterial Toxins , Inhibitory Concentration 50 , Isoenzymes , Marine Toxins , Microcystins , Oligopeptides/chemical synthesis , Oligopeptides/pharmacology , Structure-Activity Relationship
19.
Bioorg Med Chem Lett ; 13(17): 2907-11, 2003 Sep 01.
Article in English | MEDLINE | ID: mdl-14611855

ABSTRACT

A series of greatly simplified microcystin analogues comprised only of Adda (the beta-amino acid common to the microcystins, nodularins, and motuporin,) and a single additional amino acid residue was synthesized and screened for inhibition of the protein phosphatases 1 and 2A. Several of the analogues were shown to be mid-nanomolar inhibitors of the enzymes.


Subject(s)
Amino Acids/chemistry , Enzyme Inhibitors/chemistry , Peptides, Cyclic/chemistry , Peptides, Cyclic/pharmacology , Phosphoprotein Phosphatases/antagonists & inhibitors , Bacterial Toxins , Enzyme Inhibitors/pharmacology , Inhibitory Concentration 50 , Isoenzymes/antagonists & inhibitors , Marine Toxins , Microcystins , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...