Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Nat Commun ; 14(1): 2708, 2023 05 11.
Article in English | MEDLINE | ID: mdl-37169765

ABSTRACT

Motor skill learning relies on the plasticity of the primary motor cortex as task acquisition drives cortical motor network remodeling. Large-scale cortical remodeling of evoked motor outputs occurs during the learning of corticospinal-dependent prehension behavior, but not simple, non-dexterous tasks. Here we determine the response of corticospinal neurons to two distinct motor training paradigms and assess the role of corticospinal neurons in the execution of a task requiring precise modulation of forelimb movement and one that does not. In vivo calcium imaging in mice revealed temporal coding of corticospinal activity coincident with the development of precise prehension movements, but not more simplistic movement patterns. Transection of the corticospinal tract and optogenetic regulation of corticospinal activity show the necessity for patterned corticospinal network activity in the execution of precise movements but not simplistic ones. Our findings reveal a critical role for corticospinal network modulation in the learning and execution of precise motor movements.


Subject(s)
Motor Cortex , Mice , Animals , Motor Cortex/physiology , Pyramidal Tracts/physiology , Neurons , Movement/physiology , Learning/physiology
2.
Front Cell Dev Biol ; 8: 736, 2020.
Article in English | MEDLINE | ID: mdl-33015031

ABSTRACT

Neural injury in mammals often leads to persistent functional deficits as spontaneous repair in the peripheral nervous system (PNS) is often incomplete, while endogenous repair mechanisms in the central nervous system (CNS) are negligible. Peripheral axotomy elicits growth-associated gene programs in sensory and motor neurons that can support reinnervation of peripheral targets given sufficient levels of debris clearance and proximity to nerve targets. In contrast, while damaged CNS circuitry can undergo a limited amount of sprouting and reorganization, this innate plasticity does not re-establish the original connectivity. The utility of novel CNS circuitry will depend on effective connectivity and appropriate training to strengthen these circuits. One method of enhancing novel circuit connectivity is through the use of electrical stimulation, which supports axon growth in both central and peripheral neurons. This review will focus on the effects of CNS and PNS electrical stimulation in activating axon growth-associated gene programs and supporting the recovery of motor and sensory circuits. Electrical stimulation-mediated neuroplasticity represents a therapeutically viable approach to support neural repair and recovery. Development of appropriate clinical strategies employing electrical stimulation will depend upon determining the underlying mechanisms of activity-dependent axon regeneration and the heterogeneity of neuronal subtype responses to stimulation.

3.
Neurosci Lett ; 652: 94-104, 2017 Jun 23.
Article in English | MEDLINE | ID: mdl-27939980

ABSTRACT

Restoring corticospinal function after spinal cord injury is a significant challenge as the corticospinal tract elicits no substantive, spontaneous regeneration, and its interruption leaves a permanent deficit. The corticospinal circuit serves multiple motor and sensory functions within the mammalian nervous system as the direct link between isocortex and spinal cord. Maturation of the corticospinal circuit involves the refinement of projections within the spinal cord and a subsequent refinement of motor maps within the cortex. The plasticity of these cortical motor maps mirrors the acquisition of skilled motor learning, and both the maps and motor skills are disrupted following injury to the corticospinal tract. The motor cortex exhibits the capacity to incorporate changes in corticospinal projections induced by both spontaneous and therapeutic-mediated plasticity of corticospinal axons through appropriate rehabilitation. An understanding of the mechanisms of corticospinal plasticity in motor learning will undoubtedly help inform strategies to improve motor rehabilitation after spinal cord injury.


Subject(s)
Motor Skills , Neuronal Plasticity , Pyramidal Tracts/physiopathology , Spinal Cord Injuries/rehabilitation , Animals , Axons/pathology , Axons/physiology , Humans , Learning , Motor Cortex/physiopathology , Pyramidal Tracts/pathology , Spinal Cord Injuries/pathology , Spinal Cord Injuries/physiopathology
SELECTION OF CITATIONS
SEARCH DETAIL