Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Omega ; 8(29): 25780-25798, 2023 Jul 25.
Article in English | MEDLINE | ID: mdl-37521605

ABSTRACT

A SO3H-functionalized epoxy-immobilized Fe3O4 core-shell magnetic nanocatalyst was prepared through a simple three-step procedure, and it was identified by various analyses such as Fourier transform infrared (FT-IR) spectroscopy, scanning electron microscopy (SEM), differential thermal gravity (DTG), Brunauer-Emmett-Teller (BET) analysis, transmission electron microscopy (TEM), energy-dispersive X-ray spectroscopy (EDX), thermogravimetric analysis (TGA), vibration sample magnetometry (VSM), and powder X-ray diffraction (PXRD). BET analysis showed that the as-prepared nanocatalyst was synthesized with a mesoporous structure and high specific area (35.45 m2 g-1). The TEM image clearly showed that the particle size distribution was in the range of 47-65 nm. The designed magnetic nanocatalyst was used successfully in the synthesis of pyran derivatives via the reaction of dimedone, malononitrile, and various aromatic aldehydes and synthesis of pyrrolidinone derivatives via the reaction of various aromatic aldehydes, aniline, and diethyl acetylenedicarboxylate. The nanocatalyst was simply isolated from the reaction mixture utilizing an external magnet and reused several times according to the model reactions without significant loss in its efficiency.

2.
Inorg Chem ; 61(2): 992-1010, 2022 Jan 17.
Article in English | MEDLINE | ID: mdl-34962386

ABSTRACT

An efficient and heterogeneous novel magnetic silica-coated picolylaminecopper complex [Fe3O4@SiO2@GP/Picolylamine-Cu(II)] was synthesized, characterized, and employed as a magnetically recoverable nanocatalyst in Biginelli condensation for the preparation of biologically active 3,4-dihydropyrimidinones. Fe3O4@SiO2@GP/Picolylamine-Cu(II) was synthesized easily using chemical attachment of the picolylaminecompound on Fe3O4@SiO2@GP, followed by treatment with copper salt in ethanol under reflux conditions. Fe3O4@SiO2@GP/Picolylamine-Cu(II) was affirmed by various analyses such as Fourier transform infrared, thermogravimetric analysis, X-ray diffraction, vibrating-sample magnetometry, field-emission scanning electron microscopy, transmission electron microscopy, DLS, inductively coupled plasma, energy-dispersive X-ray spectrometry, X-ray photoelectron spectroscopy, and Brunauer-Emmett-Teller. The resulting catalyst system was successfully used in the Biginelli reaction through a variety of compounds such as aromatic aldehyde, urea, and ethyl acetoacetate under solvent-free conditions or ethylene glycol at 80 °C and yielded the desired products with high conversions with powerful reusability. The current approach was convenient and clean, and only 0.01 g of the catalyst could be used to perform the reaction. The easy work-up procedure, gram-scale synthesis, usage of nontoxic solvent, improved yield, short reaction times, and high durability of the catalyst are several remarkable advantages of the current approach. Also, the Fe3O4@SiO2@GP/Picolylamine-Cu(II) nanocatalyst could be recycled by an external magnet for eight runs with only a significant loss in the product yields.

3.
ACS Omega ; 6(39): 25608-25622, 2021 Oct 05.
Article in English | MEDLINE | ID: mdl-34632217

ABSTRACT

An ecofriendly inorganic-organic hybrid and novel Schiff base complex of copper coated on epoxy-modified Fe3O4@SiO2 MNPs was successfully designed and prepared from readily available chemicals. In this method, a Schiff base complex as a linker is utilized to protect copper nanoparticles to the core-shell Fe3O4 exterior without agglomeration. The resulted Schiff base complex of copper coated on epoxy-modified Fe3O4@SiO2 MNPs was characterized and confirmed via different analyses such as FT-IR, TGA, XRD, VSM, FE-SEM, TEM, ICP, EDX, and BET. The novel catalyst was examined for the synthesis of various chromene-annulated heterocycles through the one-pot three component reaction of aromatic aldehydes, various phenols (2-hydroxynaphthalene-1,4-dione/resorcinol/ß-naphthol), and malononitrile in ethanol at reflux conditions. This method includes important aspects like no usage of column chromatography, very short reaction times, simplicity of product isolation using ethanol, excellent yields, simple procedures, and magnetic recoverability of the catalyst. All in all, our method makes a novel and significant advancement in the synthesis of various chromene-annulated heterocycles.

4.
Inorg Chem ; 60(19): 15010-15023, 2021 Oct 04.
Article in English | MEDLINE | ID: mdl-34533947

ABSTRACT

A novel catalyst has been afforded by attaching of a Cu(proline)2 complex to magnetic nanoparticles through cheap, simple, and readily available chemicals. This catalyst was characterized by Fourier transform infrared, energy-dispersive X-ray, X-ray diffraction, vibrating-sample magnetometry, transmission electron microscopy, scanning electron microscopy, and inductively coupled plasma analyses. The catalytic activity of the Fe3O4@NH2@TCT@HProCu nanocatalyst was investigated in a green and effective synthesis of pyran derivatives in high yields by applying three-component reactions of malononitrile, dimedone, and aldehydes in ethanol. Conversion was high under optimal conditions. The obtained nanocatalyst could be easily separated from the mixture of the reaction and was recyclable nine times via a simple magnet without considerable reduction of its catalytic efficiency. Operational simplicity, high product yields, environmental friendliness, ecofriendliness, economical processing, and easy workup are the features of this methodology.


Subject(s)
Coordination Complexes/chemistry , Copper/chemistry , Hydroxyproline/chemistry , Magnetite Nanoparticles/chemistry , Pyrans/chemical synthesis , Catalysis , Coordination Complexes/chemical synthesis , Cyclization , Molecular Structure , Pyrans/chemistry
5.
Sci Rep ; 11(1): 10239, 2021 05 13.
Article in English | MEDLINE | ID: mdl-33986335

ABSTRACT

Herein, a robust Pd(II)-based polyfunctional magnetic amphiphilic artificial metalloenzyme was prepared by anchoring a Pd(2,2'-dipyridylamine)Cl2 bearing hydrophilic monomethyl ether poly(ethylene glycol) (mPEG) chains on the surface of amino-functionalized silica-coated magnetic nanoparticles. The 2,2'-dipyridylamine (dpa) has shown excellent complexation properties for Pd(II) and it could be easily anchored onto functionalized magnetic support by the bridging nitrogen atom. Moreover, the bridging nitrogen atom at the proximity of Pd(II) catalytic center could play an important role in dynamic suppramolecular interactions with substrates. The leaching, air and moisture resistant [Pd(dpa)Cl2] complex endow the dynamic and robust structure to the designed artificial enzyme. Moreover, the water dispersibility of designed artificial metalloenzyme raised from mPEG chains and the magnetic nanoparticles core which could function as protein mimics endow it other necessary characters of artificial enzymes. The prepared artificial metalloenzyme displayed remarkable activity in Suzuki-Miyaura cross-coupling reaction employing low-palladium loading under mild conditions, with the exceptionally high turnover frequency, clean reaction profile, easy work-up procedure, good to excellent products yields and short reaction times. The designed air- and moisture-stable artificial metalloenzyme could recycle more than fifteen times with easy separation procedure in aqueous solution under aerobic conditions without any noticeable loss in activity.

6.
Turk J Chem ; 44(1): 194-213, 2020.
Article in English | MEDLINE | ID: mdl-33488152

ABSTRACT

Cancer is one of the main global health problems. In order to develop novel antitumor agents, we synthesized 3,4-dihydropyrimidine-2(1H)-one (DHPM) and 2,6-diaryl-substituted pyridine derivatives as potential antitumor structures and evaluated their cytotoxic effects against several cancer cell lines. An easy and convenient method is reported for the synthesis of these derivatives, employing cobalt ferrite (CoFe 2 O 4 @SiO 2 -SO 3 H) magnetic nanoparticles under microwave irradiation and solvent-free conditions. The structural characteristics of the prepared nanocatalyst were investigated by FTIR, XRD, SEM, and TGA techniques. In vitro cytotoxic effects of the synthesized products were assessed against the human breast adenocarcinoma cell line (MCF-7), gastric adenocarcinoma (AGS), and human embryonic kidney (HEK293) cells via MTT assay. The results indicated that compound 4r (DHPM derivative) was the most toxic molecule against the MCF-7 cell line (IC 50 of 0.17 µg/mL). Moreover, compounds 4j and 4r (DHPM derivatives) showed excellent cytotoxic activities against the AGS cell line, with an IC 50 of 4.90 and 4.97 µg/mL, respectively. Although they are pyridine derivatives, compounds 5g and 5m were more active against the MCF-7 cell line. Results showed that the candidate compounds exhibited low cytotoxicity against HEK293 cells. The kinesin Eg5 inhibitory potential of the candidate compounds was evaluated by molecular docking. The docking results showed that, among the pyridine derivatives, compound 5m had the most free energy of binding (-9.52 kcal/mol) and lowest Ki (0.105 µM), and among the pyrimidine derivatives, compound 4r had the most free energy of binding (-7.67 kcal/mol) and lowest Ki (2.39 µM). Ligand-enzyme affinity maps showed that compounds 4r and 5m had the potential to interact with the Eg5 binding site via H-bond interactions to GLU116 and GLY117 residues. The results of our study strongly suggest that DHPM and pyridine derivatives inhibit important tumorigenic features of breast and gastric cancer cells. Our results may be helpful in the further design of DHPMs and pyridine derivatives as potential anticancer agents.

7.
Org Lett ; 21(1): 22-26, 2019 01 04.
Article in English | MEDLINE | ID: mdl-30565459

ABSTRACT

An efficient, one-pot, and convenient approach for the reaction of the same precursors, trialkyl(aryl) phosphines, acetylene diesters, and benzhydroxamic acids has been developed to produce two important classes of heterocyclic compounds: N-benzoylaziridines and 1,4,2-dioxazoles. The strategy utilizes the intermediate solvation as a key step in product selectivity. The usefulness of the developed approach has been confirmed in the unprecedented highly cis-selective formation of the N-benzoylaziridines. In addition, the procedure provides a green alternative method for the synthesis of 1,4,2-dioxazoles employing a ß-cyclodextrin nanoreactor in aqueous media.

8.
J Colloid Interface Sci ; 511: 222-232, 2018 Feb 01.
Article in English | MEDLINE | ID: mdl-29028573

ABSTRACT

l-Proline is a bifunctional versatile organocatalyst that could promote a variety of useful transformations. Some passive and dynamic interactions between this simple amino acid and different substrates, which are necessary to enzymatic reactions, have given it "the simplest enzyme" title. Herein we presented the first report on the synthesis of magnetic bifunctional l-proline as an artificial enzyme without requiring any protection/deprotection steps according to an operationally simple process. This magnetic nano-biocatalyst is a promising catalyst that in a case study was successfully applied for the synthesis of 2,4,5-trisubstituted and 1,2,4,5-tetrasubstituted imidazoles in the 70-99% and 60-90% yields respectively, which it could be extended to the variety of l-proline-based organic transformations. The synergic effect of bifunctional l-proline shell as catalytic active site and magnetite nanoparticles core, which could function as protein mimics endow it high efficiency, versatility, recoverability, reusability and good turnover frequency, which are necessary characters for artificial enzymes' designing.


Subject(s)
Enzymes , Imidazoles , Magnetite Nanoparticles/chemistry , Proline , Enzymes/chemical synthesis , Enzymes/chemistry , Imidazoles/chemical synthesis , Imidazoles/chemistry , Proline/chemical synthesis , Proline/chemistry
9.
Syst Synth Biol ; 7(4): 175-84, 2013 Dec.
Article in English | MEDLINE | ID: mdl-24432154

ABSTRACT

ABSTRACT: Development of bioorganic-inorganic composites has drawn eyes to extensive attention in biomedical fields and tissue engineering. So many attempts to prepare hydroxyapatite (HA), in conjunction with various binders including polyvinyl alcohol (PVA), and collagen has performed for late 20 years. We applied a method based on the phase separation for making of polymer porous membranes. This procedure is induced through the addition of a small quantity of water (polymer-rich phase) to a solution with HA precursors (polymer-poor phase). Thermal and structural composite properties of collagen Hydrolysate (CH)-PVA/HA Polymer-Nano-Porous Membranes were analyzed by Design of experiment that was undertaken using D-optimal approach, to select the optimal combination of nano composites precursor. The resulted composite characters were investigated by Fourier transform infrared, scanning electron microscopy (SEM) and thermal gravimetric analysis. Based on the SEM images, this new method could be clearly concluded to porous CH-PVA/HA hybrid materials. Finally the hemocompatibility of nanocomposite membranes were evaluated by the hemolysis study.

SELECTION OF CITATIONS
SEARCH DETAIL
...