Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 39
Filter
1.
bioRxiv ; 2024 Jul 20.
Article in English | MEDLINE | ID: mdl-39071439

ABSTRACT

SLC30A10 deficiency is a disease of severe manganese excess attributed to loss of SLC30A10-dependent manganese excretion via the gastrointestinal tract. Patients develop dystonia, cirrhosis, and polycythemia. They are treated with chelators but also respond to oral iron, suggesting that iron can outcompete manganese for absorption in this disease. Here we explore the latter observation. Intriguingly, manganese absorption is increased in Slc30a10-deficient mice despite manganese excess. Studies of multiple mouse models indicate that increased dietary manganese absorption reflects two processes: loss of manganese export from enterocytes into the gastrointestinal tract lumen by SLC30A10, and increased absorption of dietary manganese by iron transporters SLC11A2 (DMT1) and SLC40A1 (ferroportin). Our work demonstrates that aberrant absorption contributes prominently to SLC30A10 deficiency and expands our understanding of biological interactions between iron and manganese. Based on these results, we propose a reconsideration of the role of iron transporters in manganese homeostasis is warranted.

2.
JCI Insight ; 9(10)2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38652538

ABSTRACT

Manganese is an essential yet potentially toxic metal. Initially reported in 2012, mutations in SLC30A10 are the first known inherited cause of manganese excess. SLC30A10 is an apical membrane protein that exports manganese from hepatocytes into bile and from enterocytes into the lumen of the gastrointestinal tract. SLC30A10 deficiency results in impaired gastrointestinal manganese excretion, leading to manganese excess, neurologic deficits, liver cirrhosis, polycythemia, and erythropoietin excess. Neurologic and liver disease are attributed to manganese toxicity. Polycythemia is attributed to erythropoietin excess. The goal of this study was to determine the basis of erythropoietin excess in SLC30A10 deficiency. Here, we demonstrate that transcription factors hypoxia-inducible factor 1a (Hif1a) and 2a (Hif2a), key mediators of the cellular response to hypoxia, are both upregulated in livers of Slc30a10-deficient mice. Hepatic Hif2a deficiency corrected erythropoietin expression and polycythemia and attenuated aberrant hepatic gene expression in Slc30a10-deficient mice, while hepatic Hif1a deficiency had no discernible impact. Hepatic Hif2a deficiency also attenuated manganese excess, though the underlying cause of this is not clear at this time. Overall, our results indicate that hepatic HIF2 is a key determinant of pathophysiology in SLC30A10 deficiency and expand our understanding of the contribution of HIFs to human disease.


Subject(s)
Basic Helix-Loop-Helix Transcription Factors , Hypoxia-Inducible Factor 1, alpha Subunit , Liver , Manganese , Polycythemia , Animals , Polycythemia/metabolism , Polycythemia/genetics , Mice , Basic Helix-Loop-Helix Transcription Factors/metabolism , Basic Helix-Loop-Helix Transcription Factors/genetics , Liver/metabolism , Manganese/metabolism , Manganese/toxicity , Manganese/deficiency , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Humans , Cation Transport Proteins/genetics , Cation Transport Proteins/metabolism , Erythropoietin/metabolism , Erythropoietin/genetics , Mice, Knockout , Male , Hepatocytes/metabolism
3.
Am J Physiol Gastrointest Liver Physiol ; 326(3): G310-G317, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38252872

ABSTRACT

The Activin A Receptor type I (ALK2) is a critical component of BMP-SMAD signaling that, in the presence of ligands, phosphorylates cytosolic SMAD1/5/8 and modulates important biological processes, including bone formation and iron metabolism. In hepatocytes, the BMP-SMAD pathway controls the expression of hepcidin, the liver peptide hormone that regulates body iron homeostasis via the BMP receptors ALK2 and ALK3, and the hemochromatosis proteins. The main negative regulator of the pathway in the liver is transmembrane serine protease 6 (TMPRSS6), which downregulates hepcidin by cleaving the BMP coreceptor hemojuvelin. ALK2 function is inhibited also by the immunophilin FKBP12, which maintains the receptor in an inactive conformation. FKBP12 sequestration by tacrolimus or its silencing upregulates hepcidin in primary hepatocytes and in vivo in acute but not chronic settings. Interestingly, gain-of-function mutations in ALK2 that impair FKBP12 binding to the receptor and activate the pathway cause a bone phenotype in patients affected by Fibrodysplasia Ossificans Progressiva but not hepcidin and iron metabolism dysfunction. This observation suggests that additional mechanisms are active in the liver to compensate for the increased BMP-SMAD signaling. Here we demonstrate that Fkbp12 downregulation in hepatocytes by antisense oligonucleotide treatment upregulates the expression of the main hepcidin inhibitor Tmprss6, thus counteracting the ALK2-mediated activation of the pathway. Combined downregulation of both Fkbp12 and Tmprss6 blocks this compensatory mechanism. Our findings reveal a previously unrecognized functional cross talk between FKBP12 and TMPRSS6, the main BMP-SMAD pathway inhibitors, in the control of hepcidin transcription.NEW & NOTEWORTHY This study uncovers a previously unrecognized mechanism of hepcidin and BMP-SMAD pathway regulation in hepatocytes mediated by the immunophilin FKBP12 and the transmembrane serine protease TMPRSS6.


Subject(s)
Hepcidins , Tacrolimus Binding Protein 1A , Humans , Hepcidins/genetics , Hepcidins/metabolism , Iron/metabolism , Membrane Proteins/genetics , Serine , Serine Endopeptidases/genetics , Serine Proteases , Tacrolimus Binding Protein 1A/genetics
4.
bioRxiv ; 2023 Feb 21.
Article in English | MEDLINE | ID: mdl-36865210

ABSTRACT

Manganese is an essential yet potentially toxic metal. Initially reported in 2012, mutations in SLC30A10 are the first known inherited cause of manganese excess. SLC30A10 is an apical membrane transport protein that exports manganese from hepatocytes into bile and from enterocytes into the lumen of the gastrointestinal tract. SLC30A10 deficiency results in impaired gastrointestinal manganese excretion, leading to severe manganese excess, neurologic deficits, liver cirrhosis, polycythemia, and erythropoietin excess. Neurologic and liver disease are attributed to manganese toxicity. Polycythemia is attributed to erythropoietin excess, but the basis of erythropoietin excess in SLC30A10 deficiency has yet to be established. Here we demonstrate that erythropoietin expression is increased in liver but decreased in kidneys in Slc30a10-deficient mice. Using pharmacologic and genetic approaches, we show that liver expression of hypoxia-inducible factor 2 (Hif2), a transcription factor that mediates the cellular response to hypoxia, is essential for erythropoietin excess and polycythemia in Slc30a10-deficient mice, while hypoxia-inducible factor 1 (HIF1) plays no discernible role. RNA-seq analysis determined that Slc30a10-deficient livers exhibit aberrant expression of a large number of genes, most of which align with cell cycle and metabolic processes, while hepatic Hif2 deficiency attenuates differential expression of half of these genes in mutant mice. One such gene downregulated in Slc30a10-deficient mice in a Hif2-dependent manner is hepcidin, a hormonal inhibitor of dietary iron absorption. Our analyses indicate that hepcidin downregulation serves to increase iron absorption to meet the demands of erythropoiesis driven by erythropoietin excess. Finally, we also observed that hepatic Hif2 deficiency attenuates tissue manganese excess, although the underlying cause of this observation is not clear at this time. Overall, our results indicate that HIF2 is a key determinant of pathophysiology in SLC30A10 deficiency.

5.
Kidney Int ; 104(1): 61-73, 2023 07.
Article in English | MEDLINE | ID: mdl-36990212

ABSTRACT

Anemia is a common complication of systemic inflammation. Proinflammatory cytokines both decrease erythroblast sensitivity to erythropoietin (EPO) and increase the levels of the hepatic hormone hepcidin, sequestering iron in stores and causing functional iron deficiency. Anemia of chronic kidney disease (CKD) is a peculiar form of anemia of inflammation, characterized by impaired EPO production paralleling progressive kidney damage. Traditional therapy based on increased EPO (often in combination with iron) may have off-target effects due to EPO interaction with its non-erythroid receptors. Transferrin Receptor 2 (Tfr2) is a mediator of the iron-erythropoiesis crosstalk. Its deletion in the liver hampers hepcidin production, increasing iron absorption, whereas its deletion in the hematopoietic compartment increases erythroid EPO sensitivity and red blood cell production. Here, we show that selective hematopoietic Tfr2 deletion ameliorates anemia in mice with sterile inflammation in the presence of normal kidney function, promoting EPO responsiveness and erythropoiesis without increasing serum EPO levels. In mice with CKD, characterized by absolute rather than functional iron deficiency, Tfr2 hematopoietic deletion had a similar effect on erythropoiesis but anemia improvement was transient because of limited iron availability. Also, increasing iron levels by downregulating only hepatic Tfr2 had a minor effect on anemia. However, simultaneous deletion of hematopoietic and hepatic Tfr2, stimulating erythropoiesis and increased iron supply, was sufficient to ameliorate anemia for the entire protocol. Thus, our results suggest that combined targeting of hematopoietic and hepatic Tfr2 may be a therapeutic option to balance erythropoiesis stimulation and iron increase, without affecting EPO levels.


Subject(s)
Anemia , Erythropoietin , Iron Deficiencies , Renal Insufficiency, Chronic , Mice , Animals , Iron/metabolism , Erythropoiesis/genetics , Hepcidins/genetics , Hepcidins/metabolism , Disease Models, Animal , Anemia/etiology , Anemia/genetics , Erythropoietin/metabolism , Inflammation/drug therapy , Inflammation/complications , Receptors, Transferrin/genetics , Renal Insufficiency, Chronic/complications , Renal Insufficiency, Chronic/drug therapy , Renal Insufficiency, Chronic/genetics
6.
Mol Ther ; 30(7): 2491-2504, 2022 07 06.
Article in English | MEDLINE | ID: mdl-35450819

ABSTRACT

Coding variants (named G1 and G2) in Apolipoprotein L1 (APOL1) can explain most excess risk of kidney disease observed in African American individuals. It has been proposed that risk variant APOL1 dose, such as increased risk variant APOL1 level serves as a trigger (second hit) for disease development. The goal of this study was to determine whether lowering risk variant APOL1 levels protects from disease development in a podocyte-specific transgenic mouse disease model. We administered antisense oligonucleotides (ASO) targeting APOL1 to podocyte-specific G2APOL1 mice and observed efficient reduction of APOL1 levels. APOL1 ASO1, which more efficiently lowered APOL1 transcript levels, protected mice from albuminuria, glomerulosclerosis, tubulointerstitial fibrosis, and renal failure. Administration of APOL1 ASO1 was effective even for established disease in the NEFTA-rtTA/TRE-G2APOL1 (NEFTA/G2APOL1) mice. We observed a strong correlation between APOL1 transcript level and disease severity. We concluded that APOL1 ASO1 may be an effective therapeutic approach for APOL1-associated glomerular disease.


Subject(s)
Kidney Diseases , Podocytes , Renal Insufficiency , Animals , Apolipoprotein L1/genetics , Apolipoproteins/genetics , Genetic Variation , Kidney Diseases/genetics , Kidney Diseases/therapy , Mice , Mice, Transgenic , Oligonucleotides, Antisense/genetics
7.
iScience ; 25(4): 103996, 2022 Apr 15.
Article in English | MEDLINE | ID: mdl-35310936

ABSTRACT

Non-alcoholic steatohepatitis (NASH) is a most common chronic liver disease that is manifested by steatosis, inflammation, fibrosis, and tissue damage. Hepatocytes produce giant mitochondria termed megamitochondria in patients with NASH. It has been shown that gene knockout of OPA1, a mitochondrial dynamin-related GTPase that mediates mitochondrial fusion, prevents megamitochondria formation and liver damage in a NASH mouse model induced by a methionine-choline-deficient (MCD) diet. However, it is unknown whether blocking mitochondrial fusion mitigates NASH pathologies. Here, we acutely depleted OPA1 using antisense oligonucleotides in the NASH mouse model before or after megamitochondria formation. When OPA1 ASOs were applied at the disease onset, they effectively prevented megamitochondria formation and liver pathologies in the MCD model. Notably, even when applied after mice robustly developed NASH pathologies, OPA1 targeting effectively regressed megamitochondria and the disease phenotypes. Thus, our data show the efficacy of mitochondrial dynamics as a unique therapy for megamitochondria-associated liver disease.

8.
Nucleic Acid Ther ; 32(1): 51-65, 2022 02.
Article in English | MEDLINE | ID: mdl-34698563

ABSTRACT

Mitochondria are highly dynamic organelles that produce ATP and maintain metabolic, catabolic, and redox homeostasis. Mitochondria owe this dynamic nature to their constant fission and fusion-processes that are regulated, in part, by fusion factors (MFN1 and MFN2) and fission factors (DRP1, FIS1, MFF, MIEF1, MIEF2) located on the outer mitochondrial membrane. While mitochondrial fusion and fission are known to influence mitochondrial morphology and function, a key question is whether rebalancing mitochondrial morphology can ameliorate mitochondrial dysfunction in the context of mitochondrial pathology. In this study, we used antisense oligonucleotides (ASOs) to systematically evaluate the effects of fusion and fission factors in vitro. Free uptake by cells of fusion or fission factor ASOs caused robust decreases in target gene expression and altered a variety of mitochondrial parameters, including mitochondrial size and respiration, which were dose dependent. In Mfn1 knockout mouse embryonic fibroblasts (MEFs) and MFN2-R94Q (Charcot-Marie-Tooth Type 2 Disease-associated mutation) MEFs, two cellular models of mitochondrial dysfunction, we found that ASO-mediated silencing of only Drp1 restored mitochondrial morphology and enhanced mitochondrial respiration. Together, these data demonstrate in vitro proof-of-concept for rebalancing mitochondrial morphology to rescue function using ASOs and suggest that ASO-mediated modulation of mitochondrial dynamics may be a viable therapeutic approach to restore mitochondrial homeostasis in diseases driven by mitochondrial dysfunction.


Subject(s)
Mitochondrial Dynamics , Mitochondrial Proteins , Animals , Dynamins/genetics , Dynamins/metabolism , Fibroblasts/metabolism , Mice , Mitochondria/genetics , Mitochondria/metabolism , Mitochondrial Dynamics/genetics , Mitochondrial Proteins/genetics , Mitochondrial Proteins/metabolism , Oligonucleotides, Antisense/genetics , Oligonucleotides, Antisense/metabolism , Oligonucleotides, Antisense/pharmacology
9.
PLoS One ; 16(12): e0251995, 2021.
Article in English | MEDLINE | ID: mdl-34890402

ABSTRACT

Polycythemia Vera (PV) is a chronic myeloproliferative neoplasm resulting from an acquired driver mutation in the JAK2 gene of hematopoietic stem and progenitor cells resulting in the overproduction of mature erythrocytes and abnormally high hematocrit, in turn leading to thromboembolic complications. Therapeutic phlebotomy is the most common treatment to reduce the hematocrit levels and consequently decrease thromboembolic risk. Here we demonstrate that, by using the iron restrictive properties of the antisense oligonucleotides against Tmprss6 mRNA, we can increase hepcidin to achieve effects equivalent to therapeutic phlebotomy. We provide evidence that this less invasive approach could represent an additional therapeutic tool for the treatment of PV patients.


Subject(s)
Membrane Proteins/antagonists & inhibitors , Oligonucleotides, Antisense/pharmacology , Polycythemia Vera/drug therapy , Animals , Humans , Janus Kinase 2/genetics , Janus Kinase 2/metabolism , Membrane Proteins/genetics , Membrane Proteins/metabolism , Mice, Transgenic , Oligonucleotides, Antisense/genetics , Polycythemia Vera/genetics , Polycythemia Vera/metabolism , RNA, Messenger/antagonists & inhibitors , RNA, Messenger/genetics , RNA, Messenger/metabolism , Serine Endopeptidases/genetics , Serine Endopeptidases/metabolism
10.
Hepatology ; 74(6): 3127-3145, 2021 12.
Article in English | MEDLINE | ID: mdl-34331779

ABSTRACT

BACKGROUND AND AIMS: The hepatic mitogen-activated protein kinase (MAPK) cascade leading to c-Jun N-terminal kinase (JNK) activation has been implicated in the pathogenesis of nonalcoholic fatty liver (NAFL)/NASH. In acute hepatotoxicity, we previously identified a pivotal role for mitochondrial SH3BP5 (SAB; SH3 homology associated BTK binding protein) as a target of JNK, which sustains its activation through promotion of reactive oxygen species production. Therefore, we assessed the role of hepatic SAB in experimental NASH and metabolic syndrome. APPROACH AND RESULTS: In mice fed high-fat, high-calorie, high-fructose (HFHC) diet, SAB expression progressively increased through a sustained JNK/activating transcription factor 2 (ATF2) activation loop. Inducible deletion of hepatic SAB markedly decreased sustained JNK activation and improved systemic energy expenditure at 8 weeks followed by decreased body fat at 16 weeks of HFHC diet. After 30 weeks, mice treated with control-antisense oligonucleotide (control-ASO) developed steatohepatitis and fibrosis, which was prevented by Sab-ASO treatment. Phosphorylated JNK (p-JNK) and phosphorylated ATF2 (p-ATF2) were markedly attenuated by Sab-ASO treatment. After 52 weeks of HFHC feeding, control N-acetylgalactosamine antisense oligonucleotide (GalNAc-Ctl-ASO) treated mice fed the HFHC diet exhibited progression of steatohepatitis and fibrosis, but GalNAc-Sab-ASO treatment from weeks 40 to 52 reversed these findings while decreasing hepatic SAB, p-ATF2, and p-JNK to chow-fed levels. CONCLUSIONS: Hepatic SAB expression increases in HFHC diet-fed mice. Deletion or knockdown of SAB inhibited sustained JNK activation and steatohepatitis, fibrosis, and systemic metabolic effects, suggesting that induction of hepatocyte Sab is an important driver of the interplay between the liver and the systemic metabolic consequences of overfeeding. In established NASH, hepatocyte-targeted GalNAc-Sab-ASO treatment reversed steatohepatitis and fibrosis.


Subject(s)
Liver Cirrhosis/pathology , Membrane Proteins/metabolism , Metabolic Syndrome/pathology , Mitochondrial Proteins/metabolism , Non-alcoholic Fatty Liver Disease/pathology , Animals , Cells, Cultured , Diet, High-Fat/adverse effects , Disease Models, Animal , Gene Knockdown Techniques , Hepatocytes/pathology , Humans , Liver Cirrhosis/drug therapy , Liver Cirrhosis/genetics , Liver Cirrhosis/metabolism , MAP Kinase Signaling System , Male , Membrane Proteins/antagonists & inhibitors , Membrane Proteins/genetics , Metabolic Syndrome/drug therapy , Metabolic Syndrome/genetics , Metabolic Syndrome/metabolism , Mice , Mitochondrial Proteins/antagonists & inhibitors , Mitochondrial Proteins/genetics , Non-alcoholic Fatty Liver Disease/drug therapy , Non-alcoholic Fatty Liver Disease/genetics , Non-alcoholic Fatty Liver Disease/metabolism , Oligonucleotides, Antisense/administration & dosage , Primary Cell Culture
11.
FASEB J ; 35(5): e21567, 2021 05.
Article in English | MEDLINE | ID: mdl-33891332

ABSTRACT

Nonalcoholic fatty liver disease (NAFLD) is emerging as a leading cause of chronic liver disease worldwide. Despite intensive nonclinical and clinical research in this field, no specific pharmacological therapy is currently approved to treat NAFLD, which has been recognized as one of the major unmet medical needs of the 21st century. Our recent studies have identified STE20-type kinase MST3, which localizes to intracellular lipid droplets, as a critical regulator of ectopic fat accumulation in human hepatocytes. Here, we explored whether treatment with Mst3-targeting antisense oligonucleotides (ASOs) can promote hepatic lipid clearance and mitigate NAFLD progression in mice in the context of obesity. We found that administration of Mst3-targeting ASOs in mice effectively ameliorated the full spectrum of high-fat diet-induced NAFLD including liver steatosis, inflammation, fibrosis, and hepatocellular damage. Mechanistically, Mst3 ASOs suppressed lipogenic gene expression, as well as acetyl-CoA carboxylase (ACC) protein abundance, and substantially reduced lipotoxicity-mediated oxidative and endoplasmic reticulum stress in the livers of obese mice. Furthermore, we found that MST3 protein levels correlated positively with the severity of NAFLD in human liver biopsies. In summary, this study provides the first in vivo evidence that antagonizing MST3 signaling is sufficient to mitigate NAFLD progression in conditions of excess dietary fuels and warrants future investigations to assess whether MST3 inhibitors may provide a new strategy for the treatment of patients with NAFLD.


Subject(s)
Diet, High-Fat/adverse effects , Non-alcoholic Fatty Liver Disease/prevention & control , Obesity/complications , Oligonucleotides, Antisense/genetics , Oxidative Stress , Protein Serine-Threonine Kinases/antagonists & inhibitors , Animals , Lipogenesis , Male , Mice , Mice, Inbred C57BL , Mice, Obese , Non-alcoholic Fatty Liver Disease/etiology , Non-alcoholic Fatty Liver Disease/metabolism , Non-alcoholic Fatty Liver Disease/pathology , Protein Serine-Threonine Kinases/genetics , Signal Transduction
12.
J Pharmacol Exp Ther ; 377(1): 51-63, 2021 04.
Article in English | MEDLINE | ID: mdl-33431610

ABSTRACT

Cellular uptake of antisense oligonucleotides (ASOs) is one of the main determinants of in vivo activity and potency. A significant advancement in improving uptake into cells has come through the conjugation of ASOs to triantenarry N-acetyl-galactosamine (GalNAc3), a ligand for the asialoglycoprotein receptor on hepatocytes. The impact for antisense oligonucleotides, which are already taken up into hepatocytes, is a 10-fold improvement in potency in mice and up to a 30-fold potency improvement in humans, resulting in overall lower effective dose and exposure levels. 2'-Methoxyethyl-modified antisense oligonucleotide conjugated to GalNAc3 (ISIS 702843) is specific for human transmembrane protease serine 6 and is currently in clinical trials for the treatment of ß-thalassemia. This report summarizes a chronic toxicity study of ISIS 702843 in nonhuman primates (NHPs), including pharmacokinetic and pharmacology assessments. Suprapharmacologic doses of ISIS 702843 were well tolerated in NHPs after chronic dosing, and the data indicate that the overall safety profile is very similar to that of the unconjugated 2'-(2-methoxyethyl)-D-ribose (2'-MOE) ASOs. Notably, the GalNAc3 moiety did not cause any new toxicities nor exacerbate the known nonspecific class effects of the 2'-MOE ASOs. This observation was confirmed with multiple GalNAc3-MOE conjugates by querying a data base of monkey studies containing both GalNAc3-conjugated and unconjugated 2'-MOE ASOs. SIGNIFICANCE STATEMENT: This report documents the potency, pharmacology, and overall tolerability profile of a triantenarry N-acetyl-galactosamine (GalNAc3)-conjugated 2'-(2-methoxyethyl)-D-ribose (2'-MOE) antisense oligonucleotide (ASO) specific to transmembrane protease serine 6 after chronic treatment in the cynomolgus monkey. Collective analysis of 15 independent GalNAc3-conjugated and unconjugated 2'-MOE ASOs shows the consistency in the dose response and character of hepatic and platelet tolerability across sequences that will result in much larger safety margins for the GalNAc3-conjugated 2'-MOE ASOs when compared with the unconjugated 2'-MOE ASOs given the increased potency.


Subject(s)
Kallikreins/metabolism , Nanoconjugates/toxicity , Oligonucleotides, Antisense/toxicity , Acetylglucosamine/chemistry , Animals , Blood Platelets/drug effects , Blood Platelets/metabolism , Female , Hepatocytes/drug effects , Hepatocytes/metabolism , Humans , Macaca fascicularis , Male , Nanoconjugates/chemistry , Oligonucleotides, Antisense/chemistry , Oligonucleotides, Antisense/pharmacokinetics
13.
J Biol Chem ; 296: 100300, 2021.
Article in English | MEDLINE | ID: mdl-33460648

ABSTRACT

Acetaminophen (APAP)-induced liver necrosis is a form of regulated cell death (RCD) in which APAP activates the mitogen-activated protein kinases (MAPKs) and specifically the c-Jun-N-terminal kinase (JNK) pathway, leading to necrotic cell death. Previously, we have shown that receptor interacting protein kinase-1 (RIPK1) knockdown is also protective against APAP RCD upstream of JNK. However, whether the kinase or platform function of RIPK1 is involved in APAP RCD is not known. To answer this question, we used genetic mouse models of targeted hepatocyte RIPK1 knockout (RIPK1HepCKO) or kinase dead knock-in (RIPK1D138N) and adult hepatocyte specific knockout of the cytoprotective protein A20 (A20HepCKO), known to interact with RIPK1, to study its potential involvement in MAPK signaling. We observed no difference in injury between WT and RIPK1D138N mice post APAP. However, RIPK1HepCKO was protective. We found that RIPK1HepCKO mice had attenuated pJNK activation, while A20 was simultaneously upregulated. Conversely, A20HepCKO markedly worsened liver injury from APAP. Mechanistically, we observed a significant upregulation of apoptosis signal-regulating kinase 1 (ASK1) and increased JNK activation in A20HepCKO mice compared with littermate controls. We also demonstrated that A20 coimmunoprecipitated (co-IP) with both RIPK1 and ASK1, and that in the presence of RIPK1, there was less A20-ASK1 association than in its absence. We conclude that the kinase-independent platform function of RIPK1 is involved in APAP toxicity. Adult RIPK1HepCKO mice are protected against APAP by upregulating A20 and attenuating JNK signaling through ASK1, conversely, A20HepCKO worsens injury from APAP.


Subject(s)
Acetaminophen/toxicity , Chemical and Drug Induced Liver Injury/genetics , MAP Kinase Kinase Kinase 5/genetics , MAP Kinase Signaling System/genetics , Receptor-Interacting Protein Serine-Threonine Kinases/genetics , Tumor Necrosis Factor alpha-Induced Protein 3/genetics , Animals , Apoptosis/drug effects , Apoptosis/genetics , Chemical and Drug Induced Liver Injury/etiology , Chemical and Drug Induced Liver Injury/metabolism , Chemical and Drug Induced Liver Injury/pathology , Gene Expression Regulation , Hepatocytes/metabolism , Hepatocytes/pathology , Liver/metabolism , Liver/pathology , MAP Kinase Kinase 4/genetics , MAP Kinase Kinase 4/metabolism , MAP Kinase Kinase Kinase 5/metabolism , Male , Mice , Mice, Transgenic , Protein Binding , Receptor-Interacting Protein Serine-Threonine Kinases/deficiency , Severity of Illness Index , Tumor Necrosis Factor alpha-Induced Protein 3/metabolism
14.
Autophagy ; 17(3): 690-705, 2021 03.
Article in English | MEDLINE | ID: mdl-32070194

ABSTRACT

The autophagic degradation of lipid droplets (LDs), termed lipophagy, is a major mechanism that contributes to lipid turnover in numerous cell types. While numerous factors, including nutrient deprivation or overexpression of PNPLA2/ATGL (patatin-like phospholipase domain containing 2) drive lipophagy, the trafficking of fatty acids (FAs) produced from this pathway is largely unknown. Herein, we show that PNPLA2 and nutrient deprivation promoted the extracellular efflux of FAs. Inhibition of autophagy or lysosomal lipid degradation attenuated FA efflux highlighting a critical role for lipophagy in this process. Rather than direct transport of FAs across the lysosomal membrane, lipophagy-derived FA efflux requires lysosomal fusion to the plasma membrane. The lysosomal Ca2+ channel protein MCOLN1/TRPML1 (mucolipin 1) regulates lysosomal-plasma membrane fusion and its overexpression increased, while inhibition blocked FA efflux. In addition, inhibition of autophagy/lipophagy or MCOLN1, or sequestration of extracellular FAs with BSA attenuated the oxidation and re-esterification of lipophagy-derived FAs. Overall, these studies show that the well-established pathway of lysosomal fusion to the plasma membrane is the primary route for the disposal of FAs derived from lipophagy. Moreover, the efflux of FAs and their reuptake or subsequent extracellular trafficking to adjacent cells may play an important role in cell-to-cell lipid exchange and signaling.Abbreviations: ACTB: beta actin; ADRA1A: adrenergic receptor alpha, 1a; ALB: albumin; ATG5: autophagy related 5; ATG7: autophagy related 7; BafA1: bafilomycin A1; BECN1: beclin 1; BHBA: beta-hydroxybutyrate; BSA: bovine serum albumin; CDH1: e-cadherin; CQ: chloroquine; CTSB: cathepsin B; DGAT: diacylglycerol O-acyltransferase; FA: fatty acid; HFD: high-fat diet; LAMP1: lysosomal-associated membrane protein 1; LD: lipid droplet; LIPA/LAL: lysosomal acid lipase A; LLME: Leu-Leu methyl ester hydrobromide; MAP1LC3B/LC3: microtubule associated protein 1 light chain 3 beta; MCOLN1/TRPML1: mucolipin 1; MEF: mouse embryo fibroblast; PBS: phosphate-buffered saline; PIK3C3/VPS34: phosphatidylinositol 3-kinase catalytic subunit type 3; PLIN: perilipin; PNPLA2/ATGL patatin-like phospholipase domain containing 2; RUBCN (rubicon autophagy regulator); SM: sphingomyelin; TAG: triacylglycerol; TMEM192: transmembrane protein 192; VLDL: very low density lipoprotein.


Subject(s)
Autophagy/physiology , Exocytosis/physiology , Fatty Acids/metabolism , Lysosomes/metabolism , Animals , Autophagosomes/metabolism , Biological Transport/physiology , Homeostasis/physiology , Lipolysis/physiology , Mice, Inbred C57BL
15.
ESC Heart Fail ; 8(1): 652-661, 2021 02.
Article in English | MEDLINE | ID: mdl-33283485

ABSTRACT

AIMS: Amyloidogenic transthyretin (ATTR) amyloidosis is a fatal disease characterized by progressive cardiomyopathy and/or polyneuropathy. AKCEA-TTR-LRx (ION-682884) is a ligand-conjugated antisense drug designed for receptor-mediated uptake by hepatocytes, the primary source of circulating transthyretin (TTR). Enhanced delivery of the antisense pharmacophore is expected to increase drug potency and support lower, less frequent dosing in treatment. METHODS AND RESULTS: AKCEA-TTR-LRx demonstrated an approximate 50-fold and 30-fold increase in potency compared with the unconjugated antisense drug, inotersen, in human hepatocyte cell culture and mice expressing a mutated human genomic TTR sequence, respectively. This increase in potency was supported by a preferential distribution of AKCEA-TTR-LRx to liver hepatocytes in the transgenic hTTR mouse model. A randomized, placebo-controlled, phase 1 study was conducted to evaluate AKCEA-TTR-LRx in healthy volunteers (ClinicalTrials.gov: NCT03728634). Eligible participants were assigned to one of three multiple-dose cohorts (45, 60, and 90 mg) or a single-dose cohort (120 mg), and then randomized 10:2 (active : placebo) to receive a total of 4 SC doses (Day 1, 29, 57, and 85) in the multiple-dose cohorts or 1 SC dose in the single-dose cohort. The primary endpoint was safety and tolerability; pharmacokinetics and pharmacodynamics were secondary endpoints. All randomized participants completed treatment. No serious adverse events were reported. In the multiple-dose cohorts, AKCEA-TTR-LRx reduced TTR levels from baseline to 2 weeks after the last dose of 45, 60, or 90 mg by a mean (SD) of -85.7% (8.0), -90.5% (7.4), and -93.8% (3.4), compared with -5.9% (14.0) for pooled placebo (P < 0.001). A maximum mean (SD) reduction in TTR levels of -86.3% (6.5) from baseline was achieved after a single dose of 120 mg AKCEA-TTR-LRx . CONCLUSIONS: These findings suggest an improved safety and tolerability profile with the increase in potency achieved by productive receptor-mediated uptake of AKCEA-TTR-LRx by hepatocytes and supports further development of AKCEA-TTR-LRx for the treatment of ATTR polyneuropathy and cardiomyopathy.


Subject(s)
Amyloid Neuropathies, Familial , Oligonucleotides, Antisense , Amyloid Neuropathies, Familial/drug therapy , Amyloid Neuropathies, Familial/genetics , Animals , Ligands , Mice , Prealbumin/genetics
16.
Blood ; 136(17): 1968-1979, 2020 10 22.
Article in English | MEDLINE | ID: mdl-32556142

ABSTRACT

ß-Thalassemia intermedia is a disorder characterized by ineffective erythropoiesis (IE), anemia, splenomegaly, and systemic iron overload. Novel approaches are being explored based on the modulation of pathways that reduce iron absorption (ie, using hepcidin activators like Tmprss6-antisense oligonucleotides [ASOs]) or increase erythropoiesis (by erythropoietin [EPO] administration or modulating the ability of transferrin receptor 2 [Tfr2] to control red blood cell [RBC] synthesis). Targeting Tmprss6 messenger RNA by Tmprss6-ASO was proven to be effective in improving IE and splenomegaly by inducing iron restriction. However, we postulated that combinatorial strategies might be superior to single therapies. Here, we combined Tmprss6-ASO with EPO administration or removal of a single Tfr2 allele in the bone marrow of animals affected by ß-thalassemia intermedia (Hbbth3/+). EPO administration alone or removal of a single Tfr2 allele increased hemoglobin levels and RBCs. However, EPO or Tfr2 single-allele deletion alone, respectively, exacerbated or did not improve splenomegaly in ß-thalassemic mice. To overcome this issue, we postulated that some level of iron restriction (by targeting Tmprss6) would improve splenomegaly while preserving the beneficial effects on RBC production mediated by EPO or Tfr2 deletion. While administration of Tmprss6-ASO alone improved the anemia, the combination of Tmprss6-ASO + EPO or Tmprss6-ASO + Tfr2 single-allele deletion produced significantly higher hemoglobin levels and reduced splenomegaly. In conclusion, our results clearly indicate that these combinatorial approaches are superior to single treatments in ameliorating IE and anemia in ß-thalassemia and could provide guidance to translate some of these approaches into viable therapies.


Subject(s)
Erythropoietin/administration & dosage , Erythropoietin/genetics , Genetic Therapy/methods , Membrane Proteins/antagonists & inhibitors , Oligonucleotides, Antisense/administration & dosage , beta-Thalassemia/therapy , Animals , Cells, Cultured , Erythropoiesis/drug effects , Erythropoiesis/genetics , Gene Expression Regulation/drug effects , Iron/metabolism , Iron Overload/genetics , Iron Overload/prevention & control , Male , Membrane Proteins/genetics , Membrane Proteins/metabolism , Mice , Mice, Inbred C57BL , Mice, Transgenic , Oligonucleotides, Antisense/pharmacology , Receptors, Transferrin/genetics , Serine Endopeptidases/genetics , Serine Endopeptidases/metabolism , beta-Thalassemia/metabolism
17.
Nucleic Acids Res ; 47(21): 11284-11303, 2019 12 02.
Article in English | MEDLINE | ID: mdl-31612951

ABSTRACT

Endocytosis is a mechanism by which cells sense their environment and internalize various nutrients, growth factors and signaling molecules. This process initiates at the plasma membrane, converges with autophagy, and terminates at the lysosome. It is well-established that cellular uptake of antisense oligonucleotides (ASOs) proceeds through the endocytic pathway; however, only a small fraction escapes endosomal trafficking while the majority are rendered inactive in the lysosome. Since these pathways converge and share common molecular machinery, it is unclear if autophagy-related trafficking participates in ASO uptake or whether modulation of autophagy affects ASO activity and localization. To address these questions, we investigated the effects of autophagy modulation on ASO activity in cells and mice. We found that enhancing autophagy through small-molecule mTOR inhibition, serum-starvation/fasting, and ketogenic diet, increased ASO-mediated target reduction in vitro and in vivo. Additionally, autophagy activation enhanced the localization of ASOs into autophagosomes without altering intracellular concentrations or trafficking to other compartments. These results support a novel role for autophagy and the autophagosome as a previously unidentified compartment that participates in and contributes to enhanced ASO activity. Further, we demonstrate non-chemical methods to enhance autophagy and subsequent ASO activity using translatable approaches such as fasting or ketogenic diet.


Subject(s)
Autophagy/physiology , Oligonucleotides, Antisense/metabolism , Animals , Autophagosomes/metabolism , Biological Transport/physiology , Cells, Cultured , Endocytosis/physiology , HEK293 Cells , HeLa Cells , Humans , Mice , Mice, Inbred C57BL , Oligonucleotides, Antisense/genetics , RNA Interference , Signal Transduction
18.
J Clin Invest ; 129(12): 5278-5293, 2019 12 02.
Article in English | MEDLINE | ID: mdl-31487267

ABSTRACT

SH3 domain-binding protein that preferentially associates with Btk (SAB) is an outer-membrane docking protein for JNK-mediated impairment of mitochondrial function. Deletion of Sab in hepatocytes inhibits sustained JNK activation and cell death. The current study demonstrates that an increase in SAB expression enhanced the severity of acetaminophen-induced (APAP-induced) liver injury. Female mice were resistant to liver injury and exhibited markedly decreased hepatic SAB protein expression compared with male mice. The mechanism of SAB repression involved a pathway from ERα to p53 expression that induced miR34a-5p. miR34a-5p targeted the Sab mRNA coding region, thereby repressing SAB expression. Fulvestrant or p53 knockdown decreased miR34a-5p and increased SAB expression in female mice, leading to increased injury from APAP and TNF/galactosamine. In contrast, an ERα agonist increased p53 and miR34a-5p, which decreased SAB expression and hepatotoxicity in male mice. Hepatocyte-specific deletion of miR34a also increased the severity of liver injury in female mice, which was prevented by GalNAc-ASO knockdown of Sab. Similar to mice, premenopausal women expressed elevated levels of hepatic p53 and low levels of SAB, whereas age-matched men expressed low levels of p53 and high levels of SAB, but there was no difference in SAB expression between the sexes in the postmenopausal stage. In conclusion, SAB expression levels determined the severity of JNK-dependent liver injury. Female mice expressed low levels of hepatic SAB protein because of the ERα/p53/miR34a pathway, which repressed SAB expression and accounted for the resistance to liver injury seen in these females.


Subject(s)
Chemical and Drug Induced Liver Injury/metabolism , Hepatocytes/metabolism , Liver Failure, Acute/metabolism , Membrane Proteins/metabolism , Mitochondrial Membranes/metabolism , Mitochondrial Proteins/metabolism , Acetaminophen , Animals , Apoptosis , Cell Death/drug effects , Estrogen Receptor alpha/metabolism , Female , Gene Expression Regulation , HEK293 Cells , Humans , Male , Mice , Mice, Inbred C57BL , MicroRNAs/metabolism , Mitochondria, Liver/metabolism , Necrosis , RNA, Messenger/metabolism , Tumor Suppressor Protein p53/metabolism
19.
JCI Insight ; 4(12)2019 06 20.
Article in English | MEDLINE | ID: mdl-31217349

ABSTRACT

African Americans develop end-stage renal disease at a higher rate compared with European Americans due to 2 polymorphisms (G1 and G2 risk variants) in the apolipoprotein L1 (APOL1) gene common in people of African ancestry. Although this compelling genetic evidence provides an exciting opportunity for personalized medicine in chronic kidney disease, drug discovery efforts have been greatly hindered by the fact that APOL1 expression is lacking in rodents. Here, we describe a potentially novel physiologically relevant genomic mouse model of APOL1-associated renal disease that expresses human APOL1 from the endogenous human promoter, resulting in expression in similar tissues and at similar relative levels as humans. While naive APOL1-transgenic mice did not exhibit a renal disease phenotype, administration of IFN-γ was sufficient to robustly induce proteinuria only in APOL1 G1 mice, despite inducing kidney APOL1 expression in both G0 and G1 mice, serving as a clinically relevant "second hit." Treatment of APOL1 G1 mice with IONIS-APOL1Rx, an antisense oligonucleotide (ASO) targeting APOL1 mRNA, prior to IFN-γ challenge robustly and dose-dependently inhibited kidney and liver APOL1 expression and protected against IFN-γ-induced proteinuria, indicating that the disease-relevant cell types are sensitive to ASO treatment. Therefore, IONIS-APOL1Rx may be an effective therapeutic for APOL1 nephropathies and warrants further development.


Subject(s)
Apolipoprotein L1/genetics , Interferon-gamma , Oligonucleotides, Antisense/therapeutic use , Proteinuria/drug therapy , Proteinuria/etiology , Animals , Cell Line , Female , Humans , Mice , Mice, Transgenic
20.
Nucleic Acid Ther ; 29(4): 175-186, 2019 08.
Article in English | MEDLINE | ID: mdl-31070517

ABSTRACT

Efforts to develop treatments for diseases caused by nonsense mutations have focused on identification of small molecules that promote translational read-through of messenger RNAs (mRNAs) harboring nonsense stop codons to produce full-length proteins. However, to date, no small molecule read-through drug has received FDA approval, probably because of a lack of balance between efficacy and safety. Depletion of translation termination factors eukaryotic release factor (eRF) 1 and eRF3a in cells was shown to promote translational read-through of a luciferase reporter gene harboring a nonsense mutation. In this study, we identified antisense oligonucleotides (ASOs) targeting translation termination factors and determined if ASO-mediated depletion of these factors could be a potentially effective and safe therapeutic approach for diseases caused by nonsense mutations. We found that ASO-mediated reduction of either eRF1 or eRF3a to 30%-40% of normal levels in the mouse liver is well tolerated. Hemophilia mice that express a mutant allele of human coagulation factor IX (FIX) containing nonsense mutation R338X were treated with eRF1- or eRF3a-ASO. We found that although eRF1- or eRF3a-ASO alone only elicited a moderate read-through effect on hFIX-R338X mRNA, both worked in synergy with geneticin, a small molecule read-through drug, demonstrating significantly increased production of functional full-length hFIX protein to levels that would rescue disease phenotypes in these mice. Overall our results indicate that modulating the translation termination pathway in the liver by ASOs may provide a novel approach to improving the efficacy of small molecule read-through drugs to treat human genetic diseases caused by nonsense mutations.


Subject(s)
Factor IX/genetics , Hemophilia A/therapy , Oligonucleotides, Antisense/genetics , Peptide Chain Termination, Translational/genetics , Animals , Codon, Nonsense/genetics , Disease Models, Animal , Gentamicins/pharmacology , Hemophilia A/genetics , Hemophilia A/pathology , Humans , Liver/drug effects , Liver/metabolism , Mice , Molecular Targeted Therapy , Oligonucleotides, Antisense/therapeutic use , Peptide Chain Termination, Translational/drug effects , Peptide Termination Factors/genetics , Protein Biosynthesis/genetics , RNA, Messenger/genetics
SELECTION OF CITATIONS
SEARCH DETAIL