Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Nat Commun ; 9(1): 2082, 2018 05 25.
Article in English | MEDLINE | ID: mdl-29802295

ABSTRACT

Acid-sensing ion channels (ASICs) evolved to sense changes in extracellular acidity with the divalent cation calcium (Ca2+) as an allosteric modulator and channel blocker. The channel-blocking activity is most apparent in ASIC3, as removing Ca2+ results in channel opening, with the site's location remaining unresolved. Here we show that a ring of rat ASIC3 (rASIC3) glutamates (Glu435), located above the channel gate, modulates proton sensitivity and contributes to the formation of the elusive Ca2+ block site. Mutation of this residue to glycine, the equivalent residue in chicken ASIC1, diminished the rASIC3 Ca2+ block effect. Atomistic molecular dynamic simulations corroborate the involvement of this acidic residue in forming a high-affinity Ca2+ site atop the channel pore. Furthermore, the reported observations provide clarity for past controversies regarding ASIC channel gating. Our findings enhance understanding of ASIC gating mechanisms and provide structural and energetic insights into this unique calcium-binding site.


Subject(s)
Acid Sensing Ion Channels/chemistry , Binding Sites/physiology , Calcium/metabolism , Ion Channel Gating/physiology , Acid Sensing Ion Channels/genetics , Acid Sensing Ion Channels/metabolism , Animals , CHO Cells , Cations, Divalent/metabolism , Cricetulus , Glutamic Acid/genetics , Glutamic Acid/metabolism , Glycine/genetics , Glycine/metabolism , Molecular Dynamics Simulation , Mutagenesis, Site-Directed , Protein Domains/physiology , Structure-Activity Relationship
2.
J Pharmacol Sci ; 133(3): 184-186, 2017 Mar.
Article in English | MEDLINE | ID: mdl-28259560

ABSTRACT

Acid-sensing ion channels (ASICs) are proton-sensitive sodium channels that open in response to lowered extracellular pH and are expressed in the central and peripheral nervous systems. The ASIC3 subtype is found primarily in the periphery where the channel mediates pain signals caused by ischemia and inflammation. Here, we provide identify 4-chlorophenylguanidine (4-CPG) as an ASIC3 positive allosteric modulator and newest member of the growing group of guanidine modulators of ASICs. Furthermore, the 4-CPG reversed the effects of ASIC3 desensitization. The molecule 4-CPG offers a novel chemical backbone for the design of new ASIC3 ligands to study ASIC3 in vivo.


Subject(s)
Acid Sensing Ion Channels/physiology , Guanidine/analogs & derivatives , Sodium Channel Agonists/pharmacology , Animals , CHO Cells , Cricetulus , Guanidine/pharmacology , Hydrogen-Ion Concentration
3.
F1000Res ; 3: 222, 2014.
Article in English | MEDLINE | ID: mdl-25664170

ABSTRACT

Creatine is an endogenous compound synthesized from arginine, glycine and methionine. This dietary supplement can be acquired from food sources such as meat and fish, along with athlete supplement powders. Since the majority of creatine is stored in skeletal muscle, dietary creatine supplementation has traditionally been important for athletes and bodybuilders to increase the power, strength, and mass of the skeletal muscle. However, new uses for creatine have emerged suggesting that it may be important in preventing or delaying the onset of neurodegenerative diseases associated with aging. On average, 30% of muscle mass is lost by age 80, while muscular weakness remains a vital cause for loss of independence in the elderly population. In light of these new roles of creatine, the dietary supplement's usage has been studied to determine its efficacy in treating congestive heart failure, gyrate atrophy, insulin insensitivity, cancer, and high cholesterol. In relation to the brain, creatine has been shown to have antioxidant properties, reduce mental fatigue, protect the brain from neurotoxicity, and improve facets/components of neurological disorders like depression and bipolar disorder. The combination of these benefits has made creatine a leading candidate in the fight against age-related diseases, such as Parkinson's disease, Huntington's disease, amyotrophic lateral sclerosis, long-term memory impairments associated with the progression of Alzheimer's disease, and stroke. In this review, we explore the normal mechanisms by which creatine is produced and its necessary physiology, while paying special attention to the importance of creatine supplementation in improving diseases and disorders associated with brain aging and outlining the clinical trials involving creatine to treat these diseases.

SELECTION OF CITATIONS
SEARCH DETAIL