ABSTRACT
We investigated the effects of 6 months' oral treatment with L-dihydroxy-phenylalanine (L-DOPA)/carbidopa on the remaining dopaminergic neurones of the substantia nigra pars compacta (SNC) and the ventral tegmental area (VTA) of rats with moderate or severe 6-hydroxydopamine (6-OHDA)-induced lesions and sham-operated animals. Using a radioimmunohistochemical method we counted tyrosine hydroxylase (TH)-radioimmunoreactive cells in the SNC and the VTA in emulsion-coated sections and measured the remaining surface area of both structures on autoradiograms. The sole difference observed was a significant increase of the remaining surface area of TH radioimmunolabelling in the SNC of moderately lesioned rats treated with L-DOPA/carbidopa compared with the untreated animals, while the rest of the parameters recorded, in both structures and groups of animals, were unchanged. This suggest that in vivo, this treatment is not toxic either to healthy dopaminergic neurones of the ventral mesencephalon or to those surviving after a 6-OHDA lesion.
Subject(s)
Levodopa/pharmacology , Neurons/drug effects , Neurotoxins , Substantia Nigra/drug effects , Tegmentum Mesencephali/drug effects , Animals , Autoradiography , Biomarkers , Carbidopa/pharmacology , Female , Functional Laterality , Immunohistochemistry , Motor Activity , Neurons/cytology , Neurons/pathology , Oxidopamine , Radioimmunoassay , Rats , Rats, Wistar , Substantia Nigra/cytology , Substantia Nigra/pathology , Sulfur Radioisotopes , Tegmentum Mesencephali/cytology , Tegmentum Mesencephali/pathology , Tyrosine 3-Monooxygenase/analysisABSTRACT
Two families with autosomal dominant cerebellar ataxia with pigmentary macular dystrophy (ADCA type II) were investigated. Analysis of 23 parent-child couples demonstrated the existence of marked anticipation, greater in paternal than in maternal transmissions, with earlier age at onset and a more rapid clinical course in successive generations. Clinical analysis revealed the presence of a great variability in age at onset, initial symptom, and associated signs, confirming the characteristic clinical heterogeneity of ADCA type II. The gene for ADCA type II previously was mapped to the spinocerebellar ataxia 7 (SCA7) locus on chromosome 3p12-p21.1. Linkage analysis of the two new families of different geographic origin confirmed the characteristic genetic homogeneity of ADCA type II, distinguishing it from ADCA type I. Haplotype analysis permitted refinement of the SCA7 region to the 5-cM interval between markers D3S1312 and D3S1600 on chromosome 3p12-p13. Eighteen sequence-tagged sites were used for the construction of an integrated map of the candidate region, based on a YACs contig. The entire candidate region is contained in a single nonchimeric YAC of 660 kb. The probable involvement of a CAG trinucleotide expansion, suggested by previous studies, should greatly facilitate the identification of the gene for ADCA type II.
Subject(s)
Cerebellar Ataxia/genetics , Chromosome Mapping , Chromosomes, Human, Pair 3/genetics , Adolescent , Adult , Age Distribution , Age of Onset , Aged , Brazil , Child , Child, Preschool , Female , Genetic Linkage , Genotype , Humans , In Situ Hybridization, Fluorescence , Infant , Infant, Newborn , Male , Middle Aged , United KingdomABSTRACT
Autosomal dominant cerebellar ataxias (ADCAs) are a group of neurodegenerative disorders that are clinically and genetically heterogeneous. We report here a genetic linkage study, with five chromosome 12q markers, of three Martinican families with ADCA type 1, for which the spinocerebellar ataxia 1 (SCA1) locus was excluded. Linkage to the SCA2 locus was demonstrated with a maximal lead score of 6.64 at theta = 0.00 with marker D12S354. Recombinational events observed by haplotype reconstruction demonstrated that the SCA2 locus is located in an approximately 7-cM interval flanked by D12S105 and D12S79. Using the z(max)-1 method, multipoint analysis further reduced the candidate interval for SCA2 to a region of 5 cM. Two families shared a common haplotype at loci spanning 7 cM, which suggests a founder effect, whereas a different haplotype segregated with the disease in the third family. Finally, a mean anticipation of 12+/-14 years was found in parent-child couples, with no parental sex effect, suggesting that the disease might be caused by an expanded and unstable triplet repeat.