Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Genes Brain Behav ; 18(3): e12515, 2019 03.
Article in English | MEDLINE | ID: mdl-30129253

ABSTRACT

Common genetic factors may contribute to the high comorbidity between tobacco smoking and alcohol use disorder. Here, we assessed behavioral and biological effects of nicotine in replicate mouse lines selectively bred for high (HAP2/3) or low alcohol preference (LAP2/3). In Experiment 1, free-choice (FC) oral nicotine and quinine intake were assessed in HAP2/3 and LAP2/3 mice. Effects of nicotinic acetylcholine receptor blockade by mecamylamine on nicotine intake in HAP2 mice were also examined. In Experiment 2, HAP2/3 and LAP2/3 mice were tested for differences in sensitivity to nicotine-induced taste conditioning. In Experiment 3, the effects of a single nicotine injection on nucleus accumbens (NAc) and dorsal striatum monoamine levels in HAP2/3 and LAP2/3 mice were tested. In Experiment 1, HAP2/3 mice showed greater nicotine intake and intake ratio than LAP2/3 mice. There were no line differences in quinine intake. Mecamylamine reduced nicotine intake and intake ratio in HAP2 mice. In Experiment 2, HAP2/3 mice showed weaker nicotine-induced conditioned taste aversion (CTA) compared with LAP2/3 mice. In Experiment 3, nicotine treatment increased NAc dopamine turnover across both HAP2/3 and LAP2/3 mouse lines. These results show that there is a positive genetic correlation between oral alcohol intake (high alcohol intake/preference selection phenotype) and oral nicotine intake and a negative genetic correlation between oral alcohol intake and sensitivity to nicotine-induced CTA.


Subject(s)
Alcoholism/genetics , Genotype , Nicotine/pharmacology , Reinforcement, Psychology , Tobacco Smoking/genetics , Animals , Biogenic Monoamines/metabolism , Female , Male , Mecamylamine/pharmacology , Mice , Nicotinic Agonists/pharmacology , Nicotinic Antagonists/pharmacology , Nucleus Accumbens/drug effects , Nucleus Accumbens/metabolism
2.
Neurobiol Dis ; 95: 238-49, 2016 Nov.
Article in English | MEDLINE | ID: mdl-27452482

ABSTRACT

Extensive convergent evidence collectively suggests that mitochondrial dysfunction is central to the pathogenesis of Parkinson's disease (PD). Recently, changes in the dynamic properties of mitochondria have been increasingly implicated as a key proximate mechanism underlying neurodegeneration. However, studies have been limited by the lack of a model in which mitochondria can be imaged directly and dynamically in dopaminergic neurons of the intact vertebrate CNS. We generated transgenic zebrafish in which mitochondria of dopaminergic neurons are labeled with a fluorescent reporter, and optimized methods allowing direct intravital imaging of CNS dopaminergic axons and measurement of mitochondrial transport in vivo. The proportion of mitochondria undergoing axonal transport in dopaminergic neurons decreased overall during development between 2days post-fertilization (dpf) and 5dpf, at which point the major period of growth and synaptogenesis of the relevant axonal projections is complete. Exposure to 0.5-1.0mM MPP(+) between 4 and 5dpf did not compromise zebrafish viability or cause detectable changes in the number or morphology of dopaminergic neurons, motor function or monoaminergic neurochemistry. However, 0.5mM MPP(+) caused a 300% increase in retrograde mitochondrial transport and a 30% decrease in anterograde transport. In contrast, exposure to higher concentrations of MPP(+) caused an overall reduction in mitochondrial transport. This is the first time mitochondrial transport has been observed directly in CNS dopaminergic neurons of a living vertebrate and quantified in a PD model in vivo. Our findings are compatible with a model in which damage at presynaptic dopaminergic terminals causes an early compensatory increase in retrograde transport of compromised mitochondria for degradation in the cell body. These data are important because manipulation of early pathogenic mechanisms might be a valid therapeutic approach to PD. The novel transgenic lines and methods we developed will be useful for future studies on mitochondrial dynamics in health and disease.


Subject(s)
1-Methyl-4-phenylpyridinium/pharmacology , Axonal Transport/drug effects , Central Nervous System/drug effects , Dopaminergic Neurons/drug effects , Mitochondrial Dynamics , Neuroimaging , Animals , Axonal Transport/physiology , Axons/pathology , Cell Death/drug effects , Central Nervous System/physiopathology , Dopamine/metabolism , Dopaminergic Neurons/metabolism , MPTP Poisoning/pathology , Mitochondria/drug effects , Mitochondria/metabolism , Mitochondrial Dynamics/drug effects , Mitochondrial Dynamics/physiology , Parkinson Disease/metabolism , Zebrafish
3.
Biomed Res Int ; 2015: 672838, 2015.
Article in English | MEDLINE | ID: mdl-25688361

ABSTRACT

Parkinson's disease (PD) is the second most common neurodegenerative disorder. The majority of cases do not arise from purely genetic factors, implicating an important role of environmental factors in disease pathogenesis. Well-established environmental toxins important in PD include pesticides, herbicides, and heavy metals. However, many toxicants linked to PD and used in animal models are rarely encountered. In this context, other factors such as dietary components may represent daily exposures and have gained attention as disease modifiers. Several in vitro, in vivo, and human epidemiological studies have found a variety of dietary factors that modify PD risk. Here, we critically review findings on association between dietary factors, including vitamins, flavonoids, calorie intake, caffeine, alcohol, and metals consumed via food and fatty acids and PD. We have also discussed key data on heterocyclic amines that are produced in high-temperature cooked meat, which is a new emerging field in the assessment of dietary factors in neurological diseases. While more research is clearly needed, significant evidence exists that specific dietary factors can modify PD risk.


Subject(s)
Diet , Environmental Exposure , Parkinson Disease/etiology , Alcohols , Animals , Disease Models, Animal , Flavonoids , Humans , Metals, Heavy , Mice , Pesticides , Vitamins
4.
Toxicol Sci ; 140(1): 179-89, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24718704

ABSTRACT

Parkinson's disease (PD) is the second most common neurodegenerative disease. Much data has linked the etiology of PD to a variety of environmental factors. The majority of cases are thought to arise from a combination of genetic susceptibility and environmental factors. Chronic exposures to dietary factors, including meat, have been identified as potential risk factors. Although heterocyclic amines that are produced during high-temperature meat cooking are known to be carcinogenic, their effect on the nervous system has yet to be studied in depth. In this study, we investigated neurotoxic effects of 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP), a highly abundant heterocyclic amine in cooked meat, in vitro. We tested toxicity of PhIP and the two major phase I metabolites, N-OH-PhIP and 4'-OH-PhIP, using primary mesencephalic cultures from rat embryos. This culture system contains both dopaminergic and nondopaminergic neurons, which allows specificity of neurotoxicity to be readily examined. We find that exposure to PhIP or N-OH-PhIP is selectively toxic to dopaminergic neurons in primary cultures, resulting in a decreased percentage of dopaminergic neurons. Neurite length is decreased in surviving dopaminergic neurons. Exposure to 4'-OH-PhIP did not produce significant neurotoxicity. PhIP treatment also increased formation of oxidative damage markers, 4-hydroxy-2-nonenal (HNE) and 3-nitrotyrosine in dopaminergic neurons. Pretreatment with N-acetylcysteine was protective. Finally, treatment with blueberry extract, a dietary factor with known antioxidant and other protective mechanisms, prevented PhIP-induced toxicity. Collectively, our study suggests, for the first time, that PhIP is selectively toxic to dopaminergic neurons likely through inducing oxidative stress.


Subject(s)
Dopaminergic Neurons/drug effects , Imidazoles/toxicity , Animals , Antioxidants/isolation & purification , Antioxidants/pharmacology , Binding, Competitive , Blueberry Plants/chemistry , Cell Survival/drug effects , Dopamine Plasma Membrane Transport Proteins/metabolism , Dopaminergic Neurons/metabolism , Dopaminergic Neurons/pathology , Imidazoles/metabolism , Mesencephalon/cytology , Mesencephalon/embryology , Mesencephalon/metabolism , Neurites/drug effects , Neurites/pathology , Neurotoxicity Syndromes/etiology , Neurotoxicity Syndromes/metabolism , Neurotoxicity Syndromes/pathology , Neurotoxicity Syndromes/prevention & control , Oxidative Stress/drug effects , Plant Extracts/isolation & purification , Plant Extracts/pharmacology , Primary Cell Culture , Rats, Sprague-Dawley
SELECTION OF CITATIONS
SEARCH DETAIL