Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 32
Filter
Add more filters










Publication year range
1.
Anesth Analg ; 136(2): 240-250, 2023 02 01.
Article in English | MEDLINE | ID: mdl-36638508

ABSTRACT

BACKGROUND: One in 7 children will need general anesthesia (GA) before the age of 3. Brain toxicity of anesthetics is controversial. Our objective was to clarify whether exposure of GA to the developing brain could lead to lasting behavioral and structural brain changes. METHODS: A first study was performed in mice. The behaviors (fear conditioning, Y-maze, and actimetry) and brain anatomy (high-resolution magnetic resonance imaging) of 6- to 8-week-old Swiss mice exposed or not exposed to GA from 4 to 10 days old were evaluated. A second study was a complementary analysis from the preexisting APprentissages EXécutifs et cerveau chez les enfants d'âge scolaire (APEX) cohort to assess the replicability of our data in humans. The behaviors (behavior rating inventory of executive function, emotional control, and working memory score, Backward Digit Span, and Raven 36) and brain anatomy (high-resolution magnetic resonance imaging) were compared in 102 children 9 to 10 years of age exposed or not exposed to a single GA (surgery) during infancy. RESULTS: The animal study revealed chronic exacerbated fear behavior in the adult mice (95% confidence interval [CI], 4-80; P = .03) exposed to postnatal GA; this was associated with an 11% (95% CI, 7.5-14.5) reduction of the periaqueductal gray matter (P = .046). The study in humans suggested lower emotional control (95% CI, 0.33-9.10; P = .06) and a 6.1% (95% CI, 4.3-7.8) reduction in the posterior part of the right inferior frontal gyrus (P = .019) in the children who had been exposed to a single GA procedure. CONCLUSIONS: The preclinical and clinical findings of these independent studies suggest lasting effects of early life exposure to anesthetics on later emotional control behaviors and brain structures.


Subject(s)
Anesthetics , Brain , Humans , Child , Adult , Animals , Mice , Brain/diagnostic imaging , Anesthesia, General/adverse effects , Magnetic Resonance Imaging/methods , Memory, Short-Term
2.
BMC Biol ; 20(1): 218, 2022 10 05.
Article in English | MEDLINE | ID: mdl-36199089

ABSTRACT

BACKGROUND: Perineuronal nets (PNNs) are specialized extracellular matrix structures mainly found around fast-spiking parvalbumin (FS-PV) interneurons. In the adult, their degradation alters FS-PV-driven functions, such as brain plasticity and memory, and altered PNN structures have been found in neurodevelopmental and central nervous system disorders such as Alzheimer's disease, leading to interest in identifying targets able to modify or participate in PNN metabolism. The serine protease tissue-type plasminogen activator (tPA) plays multifaceted roles in brain pathophysiology. However, its cellular expression profile in the brain remains unclear and a possible role in matrix plasticity through PNN remodeling has never been investigated. RESULT: By combining a GFP reporter approach, immunohistology, electrophysiology, and single-cell RT-PCR, we discovered that cortical FS-PV interneurons are a source of tPA in vivo. We found that mice specifically lacking tPA in FS-PV interneurons display denser PNNs in the somatosensory cortex, suggesting a role for tPA from FS-PV interneurons in PNN remodeling. In vitro analyses in primary cultures of mouse interneurons also showed that tPA converts plasminogen into active plasmin, which in turn, directly degrades aggrecan, a major structural chondroitin sulfate proteoglycan (CSPG) in PNNs. CONCLUSIONS: We demonstrate that tPA released from FS-PV interneurons in the central nervous system reduces PNN density through CSPG degradation. The discovery of this tPA-dependent PNN remodeling opens interesting insights into the control of brain plasticity.


Subject(s)
Parvalbumins , Tissue Plasminogen Activator , Aggrecans/metabolism , Animals , Chondroitin Sulfate Proteoglycans/metabolism , Extracellular Matrix/metabolism , Fibrinolysin/metabolism , Interneurons/physiology , Mice , Parvalbumins/metabolism , Plasminogen/metabolism , Tissue Plasminogen Activator/metabolism
3.
Mol Psychiatry ; 27(4): 2197-2205, 2022 04.
Article in English | MEDLINE | ID: mdl-35145231

ABSTRACT

Tissue plasminogen activator (tPA) is a serine protease expressed in several brain regions and reported to be involved in the control of emotional and cognitive functions. Nevertheless, little is known about the structure-function relationships of these tPA-dependent behaviors. Here, by using a new model of constitutive tPA-deficient mice (tPAnull), we first show that tPA controls locomotor activity, spatial cognition and anxiety. To investigate the brain structures involved in these tPA-dependent behavioral phenotypes, we next generated tPAflox mice allowing conditional tPA deletion (cKO) following stereotaxic injections of adeno-associated virus driving Cre-recombinase expression (AAV-Cre-GFP). We demonstrate that tPA removal in the dentate gyrus of the hippocampus induces hyperactivity and partial spatial memory deficits. Moreover, the deletion of tPA in the central nucleus of the amygdala, but not in the basolateral nucleus, induces hyperactivity and reduced anxiety-like level. Importantly, we prove that these behaviors depend on the tPA present in the adult brain and not on neurodevelopmental disorders. Also, interestingly, our data show that tPA from Protein kinase-C delta-positive (PKCδ) GABAergic interneurons of the lateral/ capsular part of adult mouse central amygdala controls emotional functions through neuronal activation of the medial central amygdala. Together, our study brings new data about the critical central role of tPA in behavioral modulations in adult mice.


Subject(s)
Central Amygdaloid Nucleus , Protein Kinase C-delta/metabolism , Animals , Anxiety , Anxiety Disorders , Central Amygdaloid Nucleus/metabolism , GABAergic Neurons/metabolism , Mice , Mice, Inbred C57BL , Tissue Plasminogen Activator/genetics , Tissue Plasminogen Activator/metabolism
4.
Front Cardiovasc Med ; 8: 752769, 2021.
Article in English | MEDLINE | ID: mdl-34869659

ABSTRACT

Delayed cerebral ischemia (DCI) is one of the main prognosis factors for disability after aneurysmal subarachnoid hemorrhage (SAH). The lack of a consensual definition for DCI had limited investigation and care in human until 2010, when a multidisciplinary research expert group proposed to define DCI as the occurrence of cerebral infarction (identified on imaging or histology) associated with clinical deterioration. We performed a systematic review to assess whether preclinical models of SAH meet this definition, focusing on the combination of noninvasive imaging and neurological deficits. To this aim, we searched in PUBMED database and included all rodent SAH models that considered cerebral ischemia and/or neurological outcome and/or vasospasm. Seventy-eight publications were included. Eight different methods were performed to induce SAH, with blood injection in the cisterna magna being the most widely used (n = 39, 50%). Vasospasm was the most investigated SAH-related complication (n = 52, 67%) compared to cerebral ischemia (n = 30, 38%), which was never investigated with imaging. Neurological deficits were also explored (n = 19, 24%). This systematic review shows that no preclinical SAH model meets the 2010 clinical definition of DCI, highlighting the inconsistencies between preclinical and clinical standards. In order to enhance research and favor translation to humans, pertinent SAH animal models reproducing DCI are urgently needed.

5.
Int J Mol Sci ; 22(24)2021 Dec 15.
Article in English | MEDLINE | ID: mdl-34948279

ABSTRACT

Tissue-type plasminogen activator (tPA) plays roles in the development and the plasticity of the nervous system. Here, we demonstrate in neurons, that by opposition to the single chain form (sc-tPA), the two-chains form of tPA (tc-tPA) activates the MET receptor, leading to the recruitment of N-Methyl-d-Aspartate receptors (NMDARs) and to the endocytosis and proteasome-dependent degradation of NMDARs containing the GluN2B subunit. Accordingly, tc-tPA down-regulated GluN2B-NMDAR-driven signalling, a process prevented by blockers of HGFR/MET and mimicked by its agonists, leading to a modulation of neuronal death. Thus, our present study unmasks a new mechanism of action of tPA, with its two-chains form mediating a crosstalk between MET and the GluN2B subunit of NMDARs to control neuronal survival.


Subject(s)
Neurons/metabolism , Proto-Oncogene Proteins c-met/metabolism , Tissue Plasminogen Activator/metabolism , Animals , Cell Death/drug effects , Cell Survival/drug effects , Fetus , Mice , Primary Cell Culture , Protein Isoforms , Proto-Oncogene Proteins c-met/physiology , Receptor Cross-Talk/physiology , Receptors, N-Methyl-D-Aspartate/metabolism , Signal Transduction , Tissue Plasminogen Activator/physiology
6.
Exp Neurol ; 338: 113606, 2021 04.
Article in English | MEDLINE | ID: mdl-33453214

ABSTRACT

Tissue type Plasminogen Activator (tPA), named alteplase (Actilyse®) under its commercial form, is currently the only pharmacological treatment approved during the acute phase of ischemic stroke, used either alone or combined with thrombectomy. Interestingly, the commercial recombinant tPA (rtPA) contains two physiological forms of rtPA: the single chain rtPA (sc-rtPA) and the two-chains rtPA (tc-rtPA), with differential properties demonstrated in vitro. Using a relevant mouse model of thromboembolic stroke, we have investigated the overall effects of these two forms of rtPA when infused early after stroke onset (i.e. 20 min) on recanalization, lesion volumes, alterations of the integrity of the blood brain barrier and functional recovery. Our data reveal that there is no difference in the capacity of sc-rtPA and tc-rtPA to promote fibrinolysis and reperfusion of the tissue. However, compared to sc-rtPA, tc-rtPA is less efficient to reduce lesion volumes and to improve functional recovery, and is associated with an increased opening of the blood brain barrier. These data indicate better understanding of differential effects of these tPA forms might be important to ultimately improve stroke treatment.


Subject(s)
Fibrinolytic Agents/pharmacology , Recovery of Function/drug effects , Stroke , Tissue Plasminogen Activator/pharmacology , Animals , Male , Mice , Recombinant Proteins/pharmacology
7.
J Cereb Blood Flow Metab ; 41(4): 745-760, 2021 04.
Article in English | MEDLINE | ID: mdl-32428423

ABSTRACT

Stroke is a devastating disease. Endovascular mechanical thrombectomy is dramatically changing the management of acute ischemic stroke, raising new challenges regarding brain outcome and opening up new avenues for brain protection. In this context, relevant experiment models are required for testing new therapies and addressing important questions about infarct progression despite successful recanalization, reversibility of ischemic lesions, blood-brain barrier disruption and reperfusion damage. Here, we developed a minimally invasive non-human primate model of cerebral ischemia (Macaca fascicularis) based on an endovascular transient occlusion and recanalization of the middle cerebral artery (MCA). We evaluated per-occlusion and post-recanalization impairment on PET-MRI, in addition to acute and chronic neuro-functional assessment. Voxel-based analyses between per-occlusion PET-MRI and day-7 MRI showed two different patterns of lesion evolution: "symptomatic salvaged tissue" (SST) and "asymptomatic infarcted tissue" (AIT). Extended SST was present in all cases. AIT, remote from the area at risk, represented 45% of the final lesion. This model also expresses both worsening of fine motor skills and dysexecutive behavior over the chronic post-stroke period, a result in agreement with cortical-subcortical lesions. We thus fully characterized an original translational model of ischemia-reperfusion damage after stroke, with consistent ischemia time, and thrombus retrieval for effective recanalization.


Subject(s)
Endovascular Procedures/methods , Ischemic Stroke/diagnostic imaging , Ischemic Stroke/surgery , Thrombectomy/methods , Animals , Behavior, Animal , Blood-Brain Barrier , Disease Models, Animal , Executive Function , Infarction, Middle Cerebral Artery/diagnostic imaging , Ischemic Stroke/psychology , Macaca fascicularis , Magnetic Resonance Imaging , Male , Motor Skills , Positron-Emission Tomography , Reperfusion Injury , Tomography, X-Ray Computed , Treatment Outcome
8.
Sci Rep ; 10(1): 19577, 2020 11 11.
Article in English | MEDLINE | ID: mdl-33177650

ABSTRACT

Histone methyltransferase EZH2 is upregulated during osteoarthritis (OA), which is the most widespread rheumatic disease worldwide, and a leading cause of disability. This study aimed to assess the impact of EZH2 inhibition on cartilage degradation, inflammation and functional disability. In vitro, gain and loss of EZH2 function were performed in human articular OA chondrocytes stimulated with IL-1ß. In vivo, the effects of EZH2 inhibition were investigated on medial meniscectomy (MMX) OA mouse model. The tissue alterations were assayed by histology and the functional disabilities of the mice by actimetry and running wheel. In vitro, EZH2 overexpression exacerbated the action of IL-1ß in chondrocytes increasing the expression of genes involved in inflammation, pain (NO, PGE2, IL6, NGF) and catabolism (MMPs), whereas EZH2 inhibition by a pharmacological inhibitor, EPZ-6438, reduced IL-1ß effects. Ex vivo, EZH2 inhibition decreased IL-1ß-induced degradation of cartilage. In vivo, intra-articular injections of the EZH2 inhibitor reduced cartilage degradation and improved motor functions of OA mice. This study demonstrates that the pharmacological inhibition of the histone methyl-transferase EZH2 slows the progression of osteoarthritis and improves motor functions in an experimental OA model, suggesting that EZH2 could be an effective target for the treatment of OA by reducing catabolism, inflammation and pain.


Subject(s)
Cartilage, Articular/pathology , Enhancer of Zeste Homolog 2 Protein/genetics , Osteoarthritis/pathology , Aged , Aged, 80 and over , Animals , Benzamides/pharmacology , Biphenyl Compounds/pharmacology , Cartilage, Articular/drug effects , Chondrocytes/drug effects , Chondrocytes/physiology , Disease Models, Animal , Enhancer of Zeste Homolog 2 Protein/antagonists & inhibitors , Enhancer of Zeste Homolog 2 Protein/metabolism , Gene Expression Regulation , Humans , Interleukin-1beta/pharmacology , Male , Mice, Inbred C57BL , Middle Aged , Morpholines/pharmacology , Nerve Growth Factor/metabolism , Organ Culture Techniques , Pyridones/pharmacology
9.
Brain ; 143(10): 2957-2972, 2020 10 01.
Article in English | MEDLINE | ID: mdl-32893288

ABSTRACT

Anti-N-methyl-d-aspartate receptor (NMDAR) encephalitis is a neuropsychiatric disease characterized by an antibody-mediated autoimmune response against NMDAR. Recent studies have shown that anti-NMDAR antibodies are involved in the pathophysiology of the disease. However, the upstream immune and inflammatory processes responsible for this pathogenic response are still poorly understood. Here, we immunized mice against the region of NMDA receptor containing the N368/G369 amino acids, previously implicated in a pathogenic response. This paradigm induced encephalopathy characterized by blood-brain barrier opening, periventricular T2-MRI hyperintensities and IgG deposits into the brain parenchyma. Two weeks after immunization, mice developed clinical symptoms reminiscent of encephalitis: anxiety- and depressive-like behaviours, spatial memory impairment (without motor disorders) and increased sensitivity to seizures. This response occurred independently of overt T-cell recruitment. However, it was associated with B220+ (B cell) infiltration towards the ventricles, where they differentiated into CD138+ cells (plasmocytes). Interestingly, these B cells originated from peripheral lymphoid organs (spleen and cervical lymphoid nodes). Finally, blocking the B-cell response using a depleting cocktail of antibodies reduced the severity of symptoms in encephalitis mice. This study demonstrates that the B-cell response can lead to an autoimmune reaction against NMDAR that drives encephalitis-like behavioural impairments. It also provides a relevant platform for dissecting encephalitogenic mechanisms in an animal model, and enables the testing of therapeutic strategies targeting the immune system in anti-NMDAR encephalitis.


Subject(s)
Autoantibodies/blood , B-Lymphocytes/metabolism , Encephalitis/blood , Hashimoto Disease/blood , Nerve Tissue Proteins/toxicity , Animals , Autoantibodies/immunology , B-Lymphocytes/immunology , Encephalitis/chemically induced , Encephalitis/immunology , Hashimoto Disease/chemically induced , Hashimoto Disease/immunology , Male , Mice , Mice, Inbred C57BL , Nerve Tissue Proteins/immunology , Receptors, N-Methyl-D-Aspartate/immunology
10.
Acta Neuropathol Commun ; 7(1): 153, 2019 10 14.
Article in English | MEDLINE | ID: mdl-31610810

ABSTRACT

Major depressive disorder (MDD) is one of the most frequent psychiatric illnesses, leading to reduced quality of life, ability to work and sociability, thus ranking among the major causes of disability and morbidity worldwide. To date, genetic and environmental determinants of MDD remain mostly unknown. Here, we investigated whether and how the Plasminogen Activator Inhibitor-1 (PAI-1) may contribute to MDD. We first examined the phenotype of PAI-1 knockout (PAI-1-/-) and wild-type (PAI-1+/+) male mice with a range of behavioral tests assessing depressive-like behaviors (n = 276). We next investigated the mechanisms relating PAI-1 to MDD using molecular, biochemical and pharmacological analyzes. We demonstrate here that PAI-1 plays a key role in depression by a mechanism independent of the tissue-type Plasminogen Activator (tPA) - Brain-Derived Neurotrophic Factor (BDNF) axis, but associated with impaired metabolisms of serotonin and dopamine. Our data also reveal that PAI-1 interferes with therapeutic responses to selective serotonin reuptake inhibitors (escitalopram, fluoxetine). We thus highlight a new genetic preclinical model of depression, with the lack of PAI-1 as a factor of predisposition to MDD. Altogether, these original data reveal that PAI-1 should be now considered as a key player of MDD and as a potential target for the development of new drugs to cure depressive patients resistant to current treatments.


Subject(s)
Brain/metabolism , Depressive Disorder, Major/metabolism , Plasminogen Activator Inhibitor 1/metabolism , Animals , Brain-Derived Neurotrophic Factor/metabolism , Depression/metabolism , Disease Models, Animal , Dopamine/metabolism , Male , Mice, Inbred C57BL , Mice, Knockout , Plasminogen Activator Inhibitor 1/genetics , Serotonin/metabolism , Tissue Plasminogen Activator/metabolism
11.
Glia ; 65(12): 1961-1975, 2017 12.
Article in English | MEDLINE | ID: mdl-28850711

ABSTRACT

Myelination is a late developmental process regulated by a set of inhibitory and stimulatory factors, including extracellular matrix components. Accordingly, chondroitin sulfate proteoglycans (CSPGs) act as negative regulators of myelination processes. A disintegrin and metalloproteinase with thrombospondin motifs type 4 (ADAMTS-4) is an extracellular protease capable of degrading CSPGs. Although exogenous ADAMTS-4 has been proven to be beneficial in several models of central nervous system (CNS) injuries, the physiological functions of endogenous ADAMTS-4 remain poorly understood. We first used Adamts4/LacZ reporter mice to reveal that ADAMTS-4 is strongly expressed in the CNS, especially in the white matter, with a cellular profile restricted to mature oligodendrocytes. Interestingly, we evidenced an abnormal myelination in Adamts4-/- mice, characterized by a higher diameter of myelinated axons with a shifting g-ratio. Accordingly, lack of ADAMTS-4 is accompanied by motor deficits and disturbed nervous electrical activity. In conclusion, we demonstrate that ADAMTS-4 is a new marker of mature oligodendrocytes contributing to the myelination processes and thus to the control of motor capacities.


Subject(s)
ADAMTS4 Protein/metabolism , Movement Disorders/genetics , Oligodendroglia/metabolism , ADAMTS4 Protein/genetics , Animals , Animals, Newborn , Calcium-Binding Proteins/metabolism , Corpus Callosum/metabolism , Corpus Callosum/pathology , Corpus Callosum/ultrastructure , Disease Models, Animal , Evoked Potentials, Somatosensory/genetics , Evoked Potentials, Somatosensory/physiology , Gait Disorders, Neurologic/etiology , Locomotion/genetics , Locomotion/physiology , Male , Mice , Mice, Transgenic , Microfilament Proteins/metabolism , Microscopy, Electron , Movement Disorders/physiopathology , Myelin Basic Protein/metabolism , Nerve Tissue Proteins/metabolism , Oligodendroglia/pathology , Oligodendroglia/ultrastructure , Receptor, Platelet-Derived Growth Factor alpha/metabolism , Statistics, Nonparametric , beta-Galactosidase/genetics , beta-Galactosidase/metabolism
12.
Front Behav Neurosci ; 11: 109, 2017.
Article in English | MEDLINE | ID: mdl-28634446

ABSTRACT

Animals use distal and proximal visual cues to accurately navigate in their environment, with the possibility of the occurrence of associative mechanisms such as cue competition as previously reported in honey-bees, rats, birds and humans. In this pilot study, we investigated one of the most common forms of cue competition, namely the overshadowing effect, between visual landmarks during spatial learning in mice. To this end, C57BL/6J × Sv129 mice were given a two-trial place recognition task in a T-maze, based on a novelty free-choice exploration paradigm previously developed to study spatial memory in rodents. As this procedure implies the use of different aspects of the environment to navigate (i.e., mice can perceive from each arm of the maze), we manipulated the distal and proximal visual landmarks during both the acquisition and retrieval phases. Our prospective findings provide a first set of clues in favor of the occurrence of an overshadowing between visual cues during a spatial learning task in mice when both types of cues are of the same modality but at varying distances from the goal. In addition, the observed overshadowing seems to be non-reciprocal, as distal visual cues tend to overshadow the proximal ones when competition occurs, but not vice versa. The results of the present study offer a first insight about the occurrence of associative mechanisms during spatial learning in mice, and may open the way to promising new investigations in this area of research. Furthermore, the methodology used in this study brings a new, useful and easy-to-use tool for the investigation of perceptive, cognitive and/or attentional deficits in rodents.

13.
Cereb Cortex ; 27(10): 4783-4796, 2017 10 01.
Article in English | MEDLINE | ID: mdl-27613436

ABSTRACT

In humans, spatial cognition and navigation impairments are a frequent situation during physiological and pathological aging, leading to a dramatic deterioration in the quality of life. Despite the discovery of neurons with location-specific activity in rodents, that is, place cells in the hippocampus and later on grid cells in the entorhinal cortex (EC), the molecular mechanisms underlying spatial cognition are still poorly known. Our present data bring together in an unusual combination 2 molecules of primary biological importance: a major neuronal excitatory receptor, N-methyl-D-aspartate receptor (NMDAR), and an extracellular protease, tissue plasminogen activator (tPA), in the control of spatial navigation. By using tPA-deficient mice and a structure-selective pharmacological approach, we demonstrate that the tPA-dependent NMDAR signaling potentiation in the EC plays a key and selective role in the encoding and the subsequent use of distant landmarks during spatial learning. We also demonstrate that this novel function of tPA in the EC is reduced during aging. Overall, these results argue for the concept that encoding of proximal versus distal landmarks is mediated not only by different anatomical pathways but also by different molecular mechanisms, with the tPA-dependent potentiation of NMDAR signaling in the EC that plays an important role.


Subject(s)
Entorhinal Cortex/metabolism , Receptors, N-Methyl-D-Aspartate/metabolism , Aging , Animals , Calcium/metabolism , Female , Hippocampus/metabolism , Male , Mice, Knockout , Neurons/metabolism , Signal Transduction/physiology , Tissue Plasminogen Activator/deficiency , Tissue Plasminogen Activator/metabolism
14.
Sci Transl Med ; 7(299): 299ra121, 2015 Aug 05.
Article in English | MEDLINE | ID: mdl-26246166

ABSTRACT

Numerous treatments have been reported to provide a beneficial outcome in experimental animal stroke models; however, these treatments (with the exception of tissue plasminogen activator) have failed in clinical trials. To improve the translation of treatment efficacy from bench to bedside, we have performed a preclinical randomized controlled multicenter trial (pRCT) to test a potential stroke therapy under circumstances closer to the design and rigor of a clinical randomized control trial. Anti-CD49d antibodies, which inhibit the migration of leukocytes into the brain, were previously investigated in experimental stroke models by individual laboratories. Despite the conflicting results from four positive and one inconclusive preclinical studies, a clinical trial was initiated. To confirm the preclinical results and to test the feasibility of conducting a pRCT, six independent European research centers investigated the efficacy of anti-CD49d antibodies in two distinct mouse models of stroke in a centrally coordinated, randomized, and blinded approach. The results pooled from all research centers revealed that treatment with CD49d-specific antibodies significantly reduced both leukocyte invasion and infarct volume after the permanent distal occlusion of the middle cerebral artery, which causes a small cortical infarction. In contrast, anti-CD49d treatment did not reduce lesion size or affect leukocyte invasion after transient proximal occlusion of the middle cerebral artery, which induces large lesions. These results suggest that the benefits of immune-targeted approaches may depend on infarct severity and localization. This study supports the feasibility of performing pRCTs.


Subject(s)
Antibodies, Monoclonal/therapeutic use , Brain Ischemia/drug therapy , Disease Models, Animal , Drug Evaluation, Preclinical , Integrin alpha4/immunology , Acute Disease , Animals , Brain Ischemia/immunology , Humans , Mice , Random Allocation , Treatment Outcome
15.
Neurobiol Dis ; 66: 28-42, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24576594

ABSTRACT

Although tissue plasminogen activator (tPA) is known to promote neuronal remodeling in the CNS, no mechanism of how this plastic function takes place has been reported so far. We provide here in vitro and in vivo demonstrations that this serine protease neutralizes inhibitory chondroitin sulfate proteoglycans (CSPGs) by promoting their degradation via the direct activation of endogenous type 4 disintegrin and metalloproteinase with thrombospondin motifs (ADAMTS-4). Accordingly, in a model of compression-induced spinal cord injury (SCI) in rats, we found that administration of either tPA or its downstream effector ADAMTS-4 restores the tPA-dependent activity lost after the SCI and thereby, reduces content of CSPGs in the spinal cord, a cascade of events leading to an improved axonal regeneration/sprouting and eventually long term functional recovery. This is the first study to reveal a tPA-ADAMTS-4 axis and its function in the CNS. It also raises the prospect of exploiting such cooperation as a therapeutic tool for enhancing recovery after acute CNS injuries.


Subject(s)
ADAM Proteins/metabolism , Chondroitin Sulfate Proteoglycans/metabolism , Neuronal Plasticity/drug effects , Neuroprotective Agents/pharmacology , Procollagen N-Endopeptidase/metabolism , Spinal Cord Injuries/drug therapy , Tissue Plasminogen Activator/pharmacology , ADAMTS4 Protein , Animals , Axons/drug effects , Axons/physiology , Cells, Cultured , Female , Neurites/drug effects , Neurites/physiology , Neurocan , Neuropeptides/pharmacology , Plasminogen Activator Inhibitor 1/pharmacology , Rats , Rats, Wistar , Recovery of Function , Serine Proteinase Inhibitors/pharmacology , Serpins/pharmacology , Spinal Cord/drug effects , Spinal Cord/physiopathology , Spinal Cord Compression/drug therapy , Spinal Cord Compression/physiopathology , Spinal Cord Injuries/physiopathology , Tissue Plasminogen Activator/antagonists & inhibitors , Neuroserpin
16.
Transl Stroke Res ; 4(3): 297-307, 2013 Jun.
Article in English | MEDLINE | ID: mdl-24323300

ABSTRACT

Rodent animal models of stroke are widely used with brain ischemia inducible by various occlusion methods. Permanent or transient occlusion of the distal portion of the middle cerebral artery (MCAO) offers a reproducible model with low mortality rates, and it is the most likely model of choice for mid- and long-term studies to assess neurorepair or long-term effects of neuroprotective drugs. Therefore, a measurable and stable neurological assessment would be required to evaluate sensorimotor and cognitive deficits at short and long terms as suggested by the Stroke Therapy Academic Industry Roundtable preclinical recommendations. We review the usefulness of different tests used to measure functional outcome after distal MCAO in mice and further sustain these data with our own multilaboratories' experience. Results show that several tests were suitable to detect neurological deterioration at short term. Grip strength and latency to move have shown some usefulness at long term, with important differences between strains, while less clear are the data for the corner test. Important strain differences in terms of infarct volume are also reported in this study. Statistical power analysis and sample size calculation of our data confirmed the value of grip strength and latency to move tests but suggest that larger sample size would be required. In conclusion, there are no robust data supporting the use of a specific behavior test to assess long-term functional outcome after distal MCAO in mice. This is an important limitation since translational basic research should provide data to help further clinical trial evaluation. New multicenter studies with larger sample size and specific mouse strains are needed to confirm the validity of tests, such as the corner, latency to move or grip strength.


Subject(s)
Disease Models, Animal , Infarction, Middle Cerebral Artery/physiopathology , Analysis of Variance , Animals , Behavior, Animal , Infarction, Middle Cerebral Artery/pathology , Male , Medical Laboratory Personnel , Mice , Nervous System Diseases/pathology , Nervous System Diseases/physiopathology , Neurologic Examination , Neuropsychological Tests , Reaction Time/physiology , Sample Size
17.
Stroke ; 44(12): 3482-9, 2013 Dec.
Article in English | MEDLINE | ID: mdl-24105700

ABSTRACT

BACKGROUND AND PURPOSE: The aim of the present study was to investigate the effects of normobaric oxygen (NBO) therapy on T2*-weighted images of intracranial hemorrhages (ICHs). METHODS: Two common models of ICH were performed in mice, and longitudinal T2*-weighted images of the hematomas were acquired under normoxia or NBO. The effects of NBO were also investigated on perfusion-weighted imaging, susceptibility-weighted imaging, and molecular imaging of vascular cell adhesion molecule-1 after ICH. Last, we performed neurological testing, including neuroscore, actimetry, and gait analysis (Catwalk), to study the influence of NBO on neurological outcome of mice presenting ICH. RESULTS: Our results demonstrated that NBO, even during a short period of time, dramatically reduces the sensitivity of T2*-weighted imaging to detect ICH. Moreover, we provide evidence that the disappearance of ICH on T2*-weighted imaging could be used to improve accuracy of perfusion-weighted imaging and to allow molecular imaging after ICH. Importantly, a 30-minute NBO preparation 24 hours after ICH onset does not influence neurological outcome. CONCLUSIONS: We provide an experimental demonstration that NBO significantly affects T2*-weighted imaging in ICH. Although this phenomenon could lead to inaccurate assessment of ICH volume, it could also be safely used to allow perfusion-weighted imaging and molecular imaging.


Subject(s)
Brain/pathology , Intracranial Hemorrhages/pathology , Oxygen Inhalation Therapy , Animals , Intracranial Hemorrhages/blood , Intracranial Hemorrhages/therapy , Magnetic Resonance Imaging , Mice , Oxygen/blood , Treatment Outcome
18.
Neuropharmacology ; 67: 267-71, 2013 Apr.
Article in English | MEDLINE | ID: mdl-23219658

ABSTRACT

Ischemic and hemorrhagic strokes have different etiologies, but share some pathogenic mechanisms, including a pro-neurotoxic effect of endogenous tissue plasminogen activator (tPA) via N-methyl-d-Aspartate (NMDA) receptors. Thus, in a model of intracerebral hemorrhage in rats, we investigated the therapeutic value of a strategy of immunotherapy (αATD-GluN1 antibody) preventing the interaction of tPA with NMDA receptors. We found that a single intravenous injection of αATD-GluN1 reduced brain edema, neuronal death, microglial activation and functional deficits following intracerebral hemorrhage, without affecting the hematoma volume.


Subject(s)
Immunotherapy/methods , Intracranial Hemorrhages/immunology , Intracranial Hemorrhages/metabolism , Receptors, N-Methyl-D-Aspartate/metabolism , Stroke/immunology , Stroke/metabolism , Tissue Plasminogen Activator/antagonists & inhibitors , Animals , Antibodies, Monoclonal, Murine-Derived/administration & dosage , Intracranial Hemorrhages/therapy , Male , Mice , Random Allocation , Rats , Rats, Sprague-Dawley , Stroke/therapy , Tissue Plasminogen Activator/physiology , Treatment Outcome
19.
J Neurosci ; 32(37): 12726-34, 2012 Sep 12.
Article in English | MEDLINE | ID: mdl-22972996

ABSTRACT

Tissue plasminogen activator (tPA) is a serine protease with pleiotropic actions in the CNS, such as synaptic plasticity and neuronal death. Some effects of tPA require its interaction with the GluN1 subunit of the NMDA receptor (NMDAR), leading to a potentiation of NMDAR signaling. We have reported previously that the pro-neurotoxic effect of tPA is mediated through GluN2D subunit-containing NMDARs. Thus, the aim of the present study was to determine whether GluN2D subunit-containing NMDARs drive tPA-mediated cognitive functions. To address this issue, a strategy of immunization designed to prevent the in vivo interaction of tPA with NMDARs and GluN2D-deficient mice were used in a set of behavioral tasks. Altogether, our data provide the first evidence that tPA influences spatial memory through its preferential interaction with GluN2D subunit-containing NMDARs.


Subject(s)
Glutamic Acid/metabolism , Maze Learning/physiology , Memory, Short-Term/physiology , Receptors, N-Methyl-D-Aspartate/metabolism , Space Perception/physiology , Tissue Plasminogen Activator/metabolism , Animals , Male , Mice , Mice, Knockout , Mice, Transgenic , Protein Subunits
20.
Stroke ; 43(10): 2774-81, 2012 Oct.
Article in English | MEDLINE | ID: mdl-22879098

ABSTRACT

BACKGROUND AND PURPOSE: Despite side effects including N-methyl-d-aspartate-mediated neurotoxicity, recombinant tissue-type plasminogen activator (rtPA) remains the only approved acute treatment for ischemic stroke. Memantine, used for treatment of Alzheimer disease, is an antagonist for N-methyl-d-aspartate receptors. We investigated whether memantine could be used as a neuroprotective adjunct therapy for rtPA-induced thrombolysis after stroke. METHODS: In vitro N-methyl-d-aspartate exposure, oxygen and glucose deprivation, and N-methyl-d-aspartate-mediated calcium videomicroscopy experiments were performed on murine cortical neurons in the presence of rtPA and memantine. The therapeutic safety of rtPA and memantine coadministration was evaluated in mouse models of thrombotic stroke and intracerebral hemorrhage. Ischemic and hemorrhagic volumes were assessed by MRI and neurological evaluation was performed by the string test and automated gait analysis. RESULTS: Our in vitro observations showed that memantine was able to prevent the proneurotoxic effects of rtPA in cultured cortical neurons. Although memantine did not alter the fibrinolytic activity of rtPA, our in vivo observations revealed that it blunted the noxious effects of delayed thrombolysis on lesion volumes and neurological deficits after ischemic stroke. In addition, memantine rescued rtPA-induced decrease in survival rate after intracerebral hemorrhage. CONCLUSIONS: Memantine could be used as an adjunct therapy to improve the safety of thrombolysis.


Subject(s)
Excitatory Amino Acid Antagonists/therapeutic use , Memantine/therapeutic use , Stroke/drug therapy , Thrombolytic Therapy/methods , Tissue Plasminogen Activator/adverse effects , Tissue Plasminogen Activator/therapeutic use , Animals , Cells, Cultured , Cerebral Cortex/drug effects , Cerebral Cortex/pathology , Chemotherapy, Adjuvant , Excitatory Amino Acid Antagonists/pharmacology , Fibrinolytic Agents/adverse effects , Fibrinolytic Agents/pharmacology , Fibrinolytic Agents/therapeutic use , In Vitro Techniques , Magnetic Resonance Imaging , Male , Memantine/pharmacology , Mice , Models, Animal , N-Methylaspartate/pharmacology , Stroke/pathology , Tissue Plasminogen Activator/pharmacology , Treatment Outcome
SELECTION OF CITATIONS
SEARCH DETAIL
...