Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Infect Immun ; 81(5): 1852-8, 2013 May.
Article in English | MEDLINE | ID: mdl-23509140

ABSTRACT

Anaplasma marginale subsp. centrale was the first vaccine used to protect against a rickettsial disease and is still in widespread use a century later. As its use preceded development of either cryopreservation or cell culture, the vaccine strain was maintained for decades by sequential passage among donor animals, excluding the natural tick-borne transmission cycle that provides a selective pressure or population "bottleneck." We demonstrated that the vaccine strain is genetically heterogeneous at 46 chromosomal loci and that heterogeneity was maintained upon inoculation into recipient animals. The number of variants per site ranged from 2 to 11 with a mean of 2.8/locus and a mode and median of 2/locus; variants included single-nucleotide polymorphisms, insertions/deletions, polynucleotide tracts, and different numbers of perfect repeats. The genetic heterogeneity is highly unlikely to be a result of strain contamination based on analysis using a panel of eight gene markers with a high power for strain discrimination. In contrast, heterogeneity appears to be a result of genetic drift in the absence of the restriction of tick passage. Heterogeneity could be reduced following tick passage, and the reduced heterogeneity could be maintained in sequential intravenous and tick-borne passages. The reduction in vaccine strain heterogeneity following tick passage did not confer an enhanced transmission phenotype, indicating that a stochastically determined population bottleneck was likely responsible as opposed to a positive selective pressure. These findings demonstrate the plasticity of an otherwise highly constrained genome and highlight the role of natural transmission cycles in shaping and maintaining the bacterial genome.


Subject(s)
Anaplasma marginale/genetics , Anaplasma marginale/immunology , Anaplasmosis/transmission , Bacterial Vaccines/genetics , Genetic Heterogeneity , Anaplasmosis/prevention & control , Animals , Ticks/microbiology
2.
Infect Immun ; 79(3): 1311-8, 2011 Mar.
Article in English | MEDLINE | ID: mdl-21189322

ABSTRACT

Live vaccination with Anaplasma marginale subsp. centrale (synonym for Anaplasma centrale) induces protection against severe disease upon challenge with A. marginale sensu stricto strains. Despite over a century of field use, the targets of protective immunity remained unknown. Using a broad proteomic approach, we identified the proteins in a challenge sensu stricto strain that were bound by the relevant antibody isotype induced by live vaccination with Anaplasma marginale subsp. centrale. A core of 15 proteins was identified in vaccinated animals across multiple major histocompatibility complex (MHC) haplotypes. This core separated into two structural/functional classes: "housekeeping" proteins involved in replication and metabolism and outer membrane proteins (OMPs). Orthologous proteins of both classes were identified within the vaccine strain and among sensu stricto strains. In contrast to the broad conservation among strains in the sequences of the housekeeping proteins, there was significantly greater divergence in the OMPs and greater divergence in both OMP sequences and the encoding locus structure between the vaccine strain and the sensu stricto strains than among the sensu stricto strains. The OMPs bound by live vaccine-induced antibody overlapped with OMPs that were immunogenic in animals vaccinated with inactivated vaccines and subsequently protected against bacteremia and disease. The identification of this core set of OMPs is consistent with the hypothesis that "subdominant" immunogens are required for vaccine-induced protection against A. marginale and provides clear direction for development of a safer, more effective vaccine.


Subject(s)
Anaplasma centrale/genetics , Anaplasma marginale/genetics , Bacterial Outer Membrane Proteins/genetics , Bacterial Vaccines/immunology , Anaplasma centrale/immunology , Anaplasma marginale/immunology , Anaplasmosis/genetics , Anaplasmosis/immunology , Anaplasmosis/prevention & control , Animals , Antigens, Bacterial/genetics , Antigens, Bacterial/immunology , Bacterial Outer Membrane Proteins/immunology , Bacterial Vaccines/genetics , Base Sequence , Cattle , Chromatography, Liquid , Conserved Sequence , Electrophoresis, Gel, Two-Dimensional , Immunoblotting , Molecular Sequence Data , Tandem Mass Spectrometry
3.
Infect Immun ; 78(6): 2446-53, 2010 Jun.
Article in English | MEDLINE | ID: mdl-20308303

ABSTRACT

Efficient transmission of pathogens by an arthropod vector is influenced by the ability of the pathogen to replicate and develop infectiousness within the arthropod host. While the basic life cycle of development within and transmission from the arthropod vector are known for many bacterial and protozoan pathogens, the determinants of transmission efficiency are largely unknown and represent a significant gap in our knowledge. The St. Maries strain of Anaplasma marginale is a high-transmission-efficiency strain that replicates to a high titer in the tick salivary gland and can be transmitted by <10 ticks. In contrast, A. marginale subsp. centrale (Israel vaccine strain) has an identical life cycle but replicates to a significantly lower level in the salivary gland, with transmission requiring >30-fold more ticks. We hypothesized that strain-specific genes expressed in the tick salivary gland at the time of transmission are linked to the differences in the transmission efficiency phenotype. Using both annotation-dependent and -independent analyses of the complete genome sequences, we identified 58 strain-specific genes. These genes most likely represent divergence from common ancestral genes in one or both strains based on analysis of synteny and lack of statistical support for acquisition as islands by lateral gene transfer. Twenty of the St. Maries strain-specific genes and 16 of the strain-specific genes in the Israel strain were transcribed in the tick salivary gland at the time of transmission. Although associated with the transmission phenotype, the expression levels of strain-specific genes were equal to or less than the expression levels in infected erythrocytes in the mammalian host, suggesting that function is not limited to salivary gland colonization.


Subject(s)
Anaplasma marginale/pathogenicity , Ticks/microbiology , Transcription, Genetic , Virulence Factors/biosynthesis , Animals , Genes, Bacterial , Salivary Glands/microbiology , Synteny
4.
Infect Immun ; 74(6): 3471-9, 2006 Jun.
Article in English | MEDLINE | ID: mdl-16714578

ABSTRACT

Bacterial pathogens in the genera Anaplasma and Ehrlichia encode a protein superfamily, pfam01617, which includes the predominant outer membrane proteins (OMPs) of each species, major surface protein 2 (MSP2) and MSP3 of Anaplasma marginale and Anaplasma ovis, Anaplasma phagocytophilum MSP2 (p44), Ehrlichia chaffeensis p28-OMP, Ehrlichia canis p30, and Ehrlichia ruminantium MAP1, and has been shown to be involved in both antigenic variation within the mammalian host and differential expression between the mammalian and arthropod hosts. Recently, complete sequencing of the A. marginale genome has identified an expanded set of genes, designated omp1-14, encoding new members of this superfamily. Transcriptional analysis indicated that, with the exception of the three smallest open reading frames, omp2, omp3, and omp6, these superfamily genes are transcribed in A. marginale-infected erythrocytes, tick midgut and salivary glands, and the IDE8 tick cell line. OMPs 1, 4, 7 to 9, and 11 were confirmed to be expressed as proteins by A. marginale within infected erythrocytes, with expression being either markedly lower (OMPs 1, 4, and 7 to 9) or absent (OMP11) in infected tick cells, which reflected regulation at the transcript level. Although the pfam01617 superfamily includes the antigenically variable MSP2 and MSP3 surface proteins, analysis of the omp1-14 sequences throughout a cycle of acute and persistent infection in the mammalian host and tick transmission reveals a high degree of conservation, an observation supported by sequence comparisons between the St. Maries strain and Florida strain genomes.


Subject(s)
Antigens, Bacterial/genetics , Bacterial Outer Membrane Proteins/genetics , Amino Acid Sequence , Anaplasmosis/microbiology , Anaplasmosis/transmission , Animals , Antigens, Bacterial/chemistry , Antigens, Bacterial/immunology , Bacterial Outer Membrane Proteins/chemistry , Bacterial Outer Membrane Proteins/immunology , Cattle , Conserved Sequence , Erythrocytes/microbiology , Molecular Sequence Data , Open Reading Frames , RNA, Messenger/analysis , Ticks/microbiology , Transcription, Genetic
5.
Gene ; 353(1): 89-97, 2005 Jun 20.
Article in English | MEDLINE | ID: mdl-15935572

ABSTRACT

Organisms in the family Anaplasmataceae are important tick-borne pathogens of livestock worldwide and cause recently emergent infections in humans. Despite their medical importance, very little is known about how these organisms regulate gene expression in the mammalian host, the tick vector, or during transition between the host and vector. However, it is clear that gene regulation, in addition to recombinatorial mechanisms, is essential for these small genome pathogens to adapt to distinctly different environments. In this study, we identify and establish the function of three promoter elements in the locus encoding major outer membrane protein expression sites in both Anaplasma marginale and Anaplasma phagocytophilum. Gene expression from this locus involves both classical and atypical polycistronic transcripts. The identified promoter elements have a structure similar to that defined in Escherichia coli and are functional in driving protein expression in a prokaryotic cell-free transcription and translation system and in recombinant E. coli. The two strongest promoters identified in vitro and with recombinant E. coli were also shown to be functional in A. marginale infected cells, as determined by quantification of downstream transcripts. The promoters in both A. marginale and A. phagocytophilum have similar structure and activity, supporting the conclusion that the two loci are syntenic with conservation of function. In addition, they share structural elements within the promoters that appear to be likely sites for regulation. These data enhance our understanding of how expression of these variable outer membrane proteins may be controlled in the key stages of tick-borne transmission and infection.


Subject(s)
Antigens, Bacterial/genetics , Bacterial Outer Membrane Proteins/genetics , Promoter Regions, Genetic/genetics , Animals , Base Sequence , Cattle , Cell Line , Escherichia coli/genetics , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , HL-60 Cells , Humans , Luminescent Measurements/methods , Molecular Sequence Data , RNA, Messenger/genetics , RNA, Messenger/metabolism , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism , Reverse Transcriptase Polymerase Chain Reaction/methods , Sequence Homology, Nucleic Acid , Transcription Initiation Site , Transcription, Genetic/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...