Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Main subject
Language
Publication year range
1.
Sci Adv ; 6(48)2020 Nov.
Article in English | MEDLINE | ID: mdl-33246948

ABSTRACT

Large earthquakes (magnitude ≥ 7.0) are rare, especially along slow-slipping plate boundaries. Lack of large earthquakes in the instrumental record enlarges uncertainty of the recurrence time; the recurrence of large earthquakes is generally determined by extrapolation according to a magnitude-frequency relation. We enhance the seismological catalog of the Dead Sea Fault Zone by including a 220,000-year-long continuous large earthquake record based on seismites from the Dead Sea center. We constrain seismic shaking intensities via computational fluid dynamics modeling and invert them for earthquake magnitude. Our analysis shows that the recurrence time of large earthquakes follows a power-law distribution, with a mean of 1400 ± 160 years. This mean recurrence is notable shorter than the previous estimate of 11,000 years for the past 40,000 years. Our unique record confirms a clustered earthquake recurrence pattern and a group-fault temporal clustering model, and reveals an unexpectedly high seismicity rate on a slow-slipping plate boundary.

2.
PLoS One ; 11(1): e0145802, 2016.
Article in English | MEDLINE | ID: mdl-26815553

ABSTRACT

Although the Gulf of Aqaba-Eilat is located in the tectonically active northern Red Sea, it has been described as low-risk with regard to tsunami activity because there are no modern records of damaging tsunami events and only one tsunami (1068 AD) referred to in historical records. However, this assessment may be poorly informed given that the area was formed by and is located along the seismically active Dead Sea Fault, its population is known to fluctuate in size and literacy in part due to its harsh hyper-arid climate, and there is a dearth of field studies addressing the presence or absence of tsunamigenic deposits. Here we show evidence from two offshore cores for a major paleotsunami that occurred ~2300 years ago with a sedimentological footprint that far exceeds the scarce markers of the historically mentioned 1068 AD event. The interpretation is based on the presence of a laterally continuous and synchronous, anomalous sedimentological deposit that includes allochtonous inclusions and unique structural characteristics. Based on sedimentological parameters, these deposits could not be accounted for by other transport events, or other known background sedimentological processes.


Subject(s)
Tsunamis/history , Geologic Sediments/chemistry , History, Ancient , Indian Ocean
3.
Sci Total Environ ; 544: 1045-58, 2016 Feb 15.
Article in English | MEDLINE | ID: mdl-26779955

ABSTRACT

The Dead Sea region has faced substantial environmental challenges in recent decades, including water resource scarcity, ~1m annual decreases in the water level, sinkhole development, ascending-brine freshwater pollution, and seismic disturbance risks. Natural processes are significantly affected by human interference as well as by climate change and tectonic developments over the long term. To get a deep understanding of processes and their interactions, innovative scientific approaches that integrate disciplinary research and education are required. The research project DESERVE (Helmholtz Virtual Institute Dead Sea Research Venue) addresses these challenges in an interdisciplinary approach that includes geophysics, hydrology, and meteorology. The project is implemented by a consortium of scientific institutions in neighboring countries of the Dead Sea (Israel, Jordan, Palestine Territories) and participating German Helmholtz Centres (KIT, GFZ, UFZ). A new monitoring network of meteorological, hydrological, and seismic/geodynamic stations has been established, and extensive field research and numerical simulations have been undertaken. For the first time, innovative measurement and modeling techniques have been applied to the extreme conditions of the Dead Sea and its surroundings. The preliminary results show the potential of these methods. First time ever performed eddy covariance measurements give insight into the governing factors of Dead Sea evaporation. High-resolution bathymetric investigations reveal a strong correlation between submarine springs and neo-tectonic patterns. Based on detailed studies of stratigraphy and borehole information, the extension of the subsurface drainage basin of the Dead Sea is now reliably estimated. Originality has been achieved in monitoring flash floods in an arid basin at its outlet and simultaneously in tributaries, supplemented by spatio-temporal rainfall data. Low-altitude, high resolution photogrammetry, allied to satellite image analysis and to geophysical surveys (e.g. shear-wave reflections) has enabled a more detailed characterization of sinkhole morphology and temporal development and the possible subsurface controls thereon. All the above listed efforts and scientific results take place with the interdisciplinary education of young scientists. They are invited to attend joint thematic workshops and winter schools as well as to participate in field experiments.

SELECTION OF CITATIONS
SEARCH DETAIL
...