Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Pollut ; 124(2): 321-9, 2003.
Article in English | MEDLINE | ID: mdl-12713931

ABSTRACT

The Colline Metallifere (Tuscany) was a major Italian mining district (FeS2, Ag, Cu, Pb, Zn) for centuries, and in the last fifty years it has become the most important area for the exploitation of geothermal resources. Leaves of the widespread oak Quercus pubescens and surface soils were collected from 90 sampling sites in the area and their elemental composition was compared. The results showed that the composition of oak leaves was not significantly affected by the presence of mineral deposits (metal sulphide ores) or soils with high concentrations of Cr, Mg, and Ni (ultramafic). Arsenic was the only element showing higher concentrations in leaves from sites with deposits of metal sulphide ores or As-polluted soils around abandoned smelting plants. Compared to the composition of epiphytic lichens andepigeic mosses from the same sites in the Colline Metallifere, the elemental composition of Q. pubescens leaves was less affected by element contributions from adsorbed soil particles. It was thus easier to evaluate atmospheric inputs of elements in oak leaves than in cryptogams.


Subject(s)
Environmental Monitoring/methods , Metallurgy , Metals/analysis , Plant Leaves/chemistry , Quercus , Soil Pollutants/analysis , Air Pollution , Bryopsida/chemistry , Industrial Waste , Lichens/chemistry
2.
Environ Pollut ; 116(2): 279-87, 2002.
Article in English | MEDLINE | ID: mdl-11806456

ABSTRACT

Samples of the moss Hypnum cupressiforme and the epiphytic lichen Parmelia, caperata were collected during the summer of 1999 in an area (Colline Metallifere, central Italy) intensively exploited in the past for metals (Cu, Fe, Pb, Zn) and currently for geothermal resources. Lichens were more sensitive than mosses to emissions of S compounds near geothermal fields and abandoned sulphide ore smelting plants. Comparison of elemental compositions of the two cryptogamic species from the same sampling sites showed significantly higher concentrations of lithophile elements (Al, Cr, Fe, Mn, Ni, Ti) in the moss and atmophile elements (Hg, Cd. Pb, Cu, V, Zn) in the lichen. Patterns of bioaccumulation of elements throughout the study area were quite similar for widespread pollutants such as S, B, As, Zn, Cr and Ni, but the lichen and the moss showed different distribution patterns of Hg, Cd and other elements subject to long-range atmospheric transport. These results are due to differences in the morphology and ecophysiology of mosses and lichens and indicate that these organisms cannot be used interchangeably as biomonitors of metals in areas with mineral deposits.


Subject(s)
Bryopsida , Environmental Monitoring/methods , Lichens , Metals, Heavy/pharmacokinetics , Mining , Trace Elements/pharmacokinetics , Environmental Pollutants/analysis , Environmental Pollutants/pharmacokinetics , Italy , Metals, Heavy/analysis , Tissue Distribution , Trace Elements/analysis
SELECTION OF CITATIONS
SEARCH DETAIL