Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Toxins (Basel) ; 16(3)2024 Mar 14.
Article in English | MEDLINE | ID: mdl-38535816

ABSTRACT

Antimicrobial peptides (AMPs) are key molecules in the innate immune defence of vertebrates with rapid action, broad antimicrobial spectrum, and ability to evade pathogen resistance mechanisms. To date, amphibians are the major group of vertebrates from which most AMPs have been characterised, but most studies have focused on the bioactive skin secretions of anurans (frogs and toads). In this study, we have analysed the complete genomes and/or transcriptomes of eight species of caecilian amphibians (order Gymnophiona) and characterised the diversity, molecular evolution, and antimicrobial potential of the AMP repertoire of this order of amphibians. We have identified 477 candidate AMPs within the studied caecilian genome and transcriptome datasets. These candidates are grouped into 29 AMP families, with four corresponding to peptides primarily exhibiting antimicrobial activity and 25 potentially serving as AMPs in a secondary function, either in their entirety or after cleavage. In silico prediction methods were used to identify 62 of those AMPs as peptides with promising antimicrobial activity potential. Signatures of directional selection were detected for five candidate AMPs, which may indicate adaptation to the different selective pressures imposed by evolutionary arms races with specific pathogens. These findings provide encouraging support for the expectation that caecilians, being one of the least-studied groups of vertebrates, and with ~300 million years of separate evolution, are an underexplored resource of great pharmaceutical potential that could help to contest antibiotic resistance and contribute to biomedical advance.


Subject(s)
Anti-Infective Agents , Antimicrobial Peptides , Humans , Animals , Anura , Bufonidae , Evolution, Molecular
2.
Biology (Basel) ; 12(6)2023 Jun 12.
Article in English | MEDLINE | ID: mdl-37372131

ABSTRACT

Aquaporins (AQPs) are a highly diverse family of transmembrane proteins involved in osmotic regulation that played an important role in the conquest of land by tetrapods. However, little is known about their possible implication in the acquisition of an amphibious lifestyle in actinopterygian fishes. Herein, we investigated the molecular evolution of AQPs in 22 amphibious actinopterygian fishes by assembling a comprehensive dataset that was used to (1) catalogue AQP paralog members and classes; (2) determine the gene family birth and death process; (3) test for positive selection in a phylogenetic framework; and (4) reconstruct structural protein models. We found evidence of adaptive evolution in 21 AQPs belonging to 5 different classes. Almost half of the tree branches and protein sites that were under positive selection were found in the AQP11 class. The detected sequence changes indicate modifications in molecular function and/or structure, which could be related to adaptation to an amphibious lifestyle. AQP11 orthologues appear to be the most promising candidates to have facilitated the processes of the water-to-land transition in amphibious fishes. Additionally, the signature of positive selection found in the AQP11b stem branch of the Gobiidae clade suggests a possible case of exaptation in this clade.

3.
Methods Protoc ; 5(2)2022 Mar 07.
Article in English | MEDLINE | ID: mdl-35314663

ABSTRACT

Molecular evolution analyses, such as detection of adaptive/purifying selection or ancestral protein reconstruction, typically require three inputs for a target gene (or gene family) in a particular group of organisms: sequence alignment, model of evolution, and phylogenetic tree. While modern advances in high-throughput sequencing techniques have led to rapid accumulation of genomic-scale data in public repositories and databases, mining such vast amount of information often remains a challenging enterprise. Here, we describe a comprehensive, versatile workflow aimed at the preparation of genome-extracted datasets readily available for molecular evolution research. The workflow involves: (1) fishing (searching and capturing) specific gene sequences of interest from taxonomically diverse genomic data available in databases at variable levels of annotation, (2) processing and depuration of retrieved sequences, (3) production of a multiple sequence alignment, (4) selection of best-fit model of evolution, and (5) solid reconstruction of a phylogenetic tree.

4.
Proc Biol Sci ; 287(1935): 20200762, 2020 09 30.
Article in English | MEDLINE | ID: mdl-32933447

ABSTRACT

Despite their miniature brains, insects exhibit substantial variation in brain size. Although the functional significance of this variation is increasingly recognized, research on whether differences in insect brain sizes are mainly the result of constraints or selective pressures has hardly been performed. Here, we address this gap by combining prospective and retrospective phylogenetic-based analyses of brain size for a major insect group, bees (superfamily Apoidea). Using a brain dataset of 93 species from North America and Europe, we found that body size was the single best predictor of brain size in bees. However, the analyses also revealed that substantial variation in brain size remained even when adjusting for body size. We consequently asked whether such variation in relative brain size might be explained by adaptive hypotheses. We found that ecologically specialized species with single generations have larger brains-relative to their body size-than generalist or multi-generation species, but we did not find an effect of sociality on relative brain size. Phylogenetic reconstruction further supported the existence of different adaptive optima for relative brain size in lineages differing in feeding specialization and reproductive strategy. Our findings shed new light on the evolution of the insect brain, highlighting the importance of ecological pressures over social factors and suggesting that these pressures are different from those previously found to influence brain evolution in other taxa.


Subject(s)
Bees , Brain , Feeding Behavior , Social Behavior , Animals , Biological Evolution
5.
Mol Phylogenet Evol ; 69(3): 619-33, 2013 Dec.
Article in English | MEDLINE | ID: mdl-23911892

ABSTRACT

Gobioidei is one of the largest suborders of teleost fishes, with nearly 2000 extant species currently recognized. They have a worldwide distribution and show a spectacular variety in morphology, ecology, and behavior. Despite their importance, phylogenetic relationships among many groups of gobioids (including some of the major lineages) still remain poorly understood. In this study, we analyze sequence data of five molecular markers (two mitochondrial and three nuclear) averaging 6000 bp for 222 species of gobioids. Our study is the first to include both multiple nuclear and mitochondrial genes to reconstruct a comprehensive multilocus phylogeny of gobioids encompassing most major lineages representing the overall diversity of one of the most speciose vertebrate lineages. Two separate datasets are produced and used to specifically address the phylogenetic placement of Rhyacichthyidae and Odontobutidae, and the phylogenetic relationships among gobioid lineages. Our results strongly support that the initial split in the gobioid tree separated a clade containing Rhyacichthyidae+Odontobutidae as the sister group of all other lineages. The family Eleotrididae branches off the gobioid tree after the Rhyacichthyidae+Odontobutidae clade, followed by the Butidae as sister group to the Gobiidae. Additionally, several major monophyletic groups are confidently identified within the two major Gobiidae subclades, the gobiine-like gobiids and the gobionelline-like gobiids. Robustness of the phylogenetic trees inferred here is significantly higher than that of previous studies, hence our results provide the most compelling molecular phylogenetic hypothesis of Gobioidei thus far. For the first time, we provide a comprehensive sampling of European gobies that traditionally have been divided into "transverse" gobies and "sand gobies". We show that the European gobies cluster in three distinct lineages, the Pomatoschistus-, Aphia-, and Gobius-lineages. The former resolved within the gobionelline-like gobiids and the latter two within the gobiine-like gobiids. These findings have significant implications for our understanding of the phylogeographic origin of European gobies in the light of the closure of the Paratethys. A rogue taxon analysis identified Kraemeria as an unstable taxon decreasing support at the base of the gobiine-like gobiids. Removal of this rogue taxon significantly increased phylogenetic resolution in that part of the tree and revealed additional insights into early bursts of cladogenesis of the gobiine-like gobiids.


Subject(s)
Genetic Speciation , Perciformes/classification , Phylogeny , Animals , Bayes Theorem , Cell Nucleus/genetics , DNA, Mitochondrial/genetics , Europe , Genetic Markers , Likelihood Functions , Models, Genetic , Perciformes/genetics , Sequence Analysis, DNA
6.
Mol Phylogenet Evol ; 66(1): 80-90, 2013 Jan.
Article in English | MEDLINE | ID: mdl-23023208

ABSTRACT

Phylogenetic relationships of species of genus Pseudoxiphophorus have been only tackled in detail based on morphology so far. However, phylogenetic evidence based on molecular data is still lacking. In this study, we have used five molecular markers (mitochondrial cytb, 16S, atp6-8, and nuclear actB and S7) to reconstruct a robust, inclusive phylogeny of Pseudoxiphophorus. Our phylogenetic results strongly disagree with the main morphological hypothesis, and indicate different phylogenetic relationships among the recognized species of Pseudoxiphophorus. Pseudoxiphophorus jonesii is recovered as the sister group of all other Pseudoxiphophorus lineages, and this initial splitting may be associated to the extension of the Mexican Neovolcanic Plateau at the Punta del Morro site (event used to calibrate our dating analysis). The branch leading to all other Pseudoxiphophorus separated subsequently into two major groups, one comprising those lineages occurring in southern Mexico and Guatemala-Belize, and another with those lineages that extended further southwards to Honduras and Nicaragua. This event took place during the Pliocene, and is likely associated with periods of inundation of the Polochic-Motagua fault area. The Isthmus of Tehuantepec also appears to have been a strong biogeographic barrier triggering cladogenesis in Pseudoxiphophorus. Heterandria formosa (traditionally placed as sister to Pseudoxiphophorus) is not sharing the most recent common ancestor with Pseudoxiphophorus, and is recovered as more distantly related to them. Furthermore, Pseudoxiphophorus bimaculatus (the most cosmopolitan species) is also recovered as a polyphyletic assemblage that appears to comprise those Pseudoxiphophorus that have not been assigned to the other eight, more localized species. All this suggests that Pseudoxiphophorus needs a major taxonomic revision as a whole in order to incorporate all existing diversity.


Subject(s)
Cell Nucleus/genetics , DNA, Mitochondrial/genetics , Evolution, Molecular , Fishes/classification , Phylogeny , Animals , Central America , Fishes/genetics , Genes, Mitochondrial , Genetic Markers , Genetic Speciation , Geography , Sequence Analysis, DNA
7.
Cell Mol Biol Lett ; 15(2): 311-41, 2010 Jun.
Article in English | MEDLINE | ID: mdl-20213503

ABSTRACT

The comparative and evolutionary analysis of molecular data has allowed researchers to tackle biological questions that have long remained unresolved. The evolution of DNA and amino acid sequences can now be modeled accurately enough that the information conveyed can be used to reconstruct the past. The methods to infer phylogeny (the pattern of historical relationships among lineages of organisms and/or sequences) range from the simplest, based on parsimony, to more sophisticated and highly parametric ones based on likelihood and Bayesian approaches. In general, molecular systematics provides a powerful statistical framework for hypothesis testing and the estimation of evolutionary processes, including the estimation of divergence times among taxa. The field of molecular systematics has experienced a revolution in recent years, and, although there are still methodological problems and pitfalls, it has become an essential tool for the study of evolutionary patterns and processes at different levels of biological organization. This review aims to present a brief synthesis of the approaches and methodologies that are most widely used in the field of molecular systematics today, as well as indications of future trends and state-of-the-art approaches.


Subject(s)
Classification/methods , Evolution, Molecular , Animals , Base Sequence , Humans , Models, Statistical , Phylogeny , Software
SELECTION OF CITATIONS
SEARCH DETAIL