Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 57
Filter
1.
Front Microbiol ; 14: 1100501, 2023.
Article in English | MEDLINE | ID: mdl-36970676

ABSTRACT

Malolactic fermentation (MLF) positively influences the quality of the wine, and it occurs as a result of a lactic acid bacteria's metabolism, mainly of the Oenococcus oeni species. However, delays and halting of MLF are frequent problems in the wine industry. This is mainly because O. oeni's development is inhibited by different kinds of stress. Even though the sequencing of the genome of the PSU-1 strain of O. oeni, as well as other strains, has made it possible to identify genes involved in the resistance to some types of stress, all of the factors that could be involved are still unknown. With the aim of contributing to this knowledge, the random mutagenesis technique was used in this study as a strategy for genetic improvement of strains of the O. oeni species. The technique proved to be capable of generating a different and improved strain when compared to the PSU-1 strain (the parent from which it descends). Then, we evaluated the metabolic behavior of both strains in three different wines. We used synthetic MaxOeno wine (pH 3.5; 15% v/v ethanol), red wine (Cabernet Sauvignon), and white wine (Chardonnay). Furthermore, we compared the transcriptome of both strains, grown in MaxOeno synthetic wine. The specific growth rate of the E1 strain was on average 39% higher in comparison to the PSU-1 strain. Interestingly, E1 strain showed an overexpression of the OEOE_1794 gene, which encodes a UspA-like protein, which has been described as promoting growth. We observed that the E1 strain was able to convert, on average, 34% more malic acid into lactate than the PSU-1 strain, regardless of the wine being used. On the other hand, the E1 strain showed a flux rate of fructose-6-phosphate production that was 86% higher than the mannitol production rate, and the internal flux rates increase in the direction of pyruvate production. This coincides with the higher number of OEOE_1708 gene transcripts observed in the E1 strain grown in MaxOeno. This gene encodes for an enzyme fructokinase (EC 2.7.1.4) involved in the transformation of fructose to fructose-6-phosphate.

2.
Methods Mol Biol ; 2399: 395-454, 2022.
Article in English | MEDLINE | ID: mdl-35604565

ABSTRACT

Wine fermentation is an ancient biotechnological process mediated by different microorganisms such as yeast and bacteria. Understanding of the metabolic and physiological phenomena taking place during this process can be now attained at a genome scale with the help of metabolic models. In this chapter, we present a detailed protocol for modeling wine fermentation using genome-scale metabolic models. In particular, we illustrate how metabolic fluxes can be computed, optimized and interpreted, for both yeast and bacteria under winemaking conditions. We also show how nutritional requirements can be determined and simulated using these models in relevant test cases. This chapter introduces fundamental concepts and practical steps for applying flux balance analysis in wine fermentation, and as such, it is intended for a broad microbiology audience as well as for practitioners in the metabolic modeling field.


Subject(s)
Fermentation , Models, Genetic , Wine , Bacteria/genetics , Bacteria/metabolism , Fermentation/genetics , Fermentation/physiology , Models, Biological , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Wine/analysis , Wine/microbiology
3.
iScience ; 24(12): 103419, 2021 Dec 17.
Article in English | MEDLINE | ID: mdl-34786538

ABSTRACT

The sudden loss of smell is among the earliest and most prevalent symptoms of COVID-19 when measured with a clinical psychophysical test. Research has shown the potential impact of frequent screening for olfactory dysfunction, but existing tests are expensive and time consuming. We developed a low-cost ($0.50/test) rapid psychophysical olfactory test (KOR) for frequent testing and a model-based COVID-19 screening framework using a Bayes Network symptoms model. We trained and validated the model on two samples: suspected COVID-19 cases in five healthcare centers (n = 926; 33% prevalence, 309 RT-PCR confirmed) and healthy miners (n = 1,365; 1.1% prevalence, 15 RT-PCR confirmed). The model predicted COVID-19 status with 76% and 96% accuracy in the healthcare and miners samples, respectively (healthcare: AUC = 0.79 [0.75-0.82], sensitivity: 59%, specificity: 87%; miners: AUC = 0.71 [0.63-0.79], sensitivity: 40%, specificity: 97%, at 0.50 infection probability threshold). Our results highlight the potential for low-cost, frequent, accessible, routine COVID-19 testing to support society's reopening.

4.
Front Bioeng Biotechnol ; 8: 578793, 2020.
Article in English | MEDLINE | ID: mdl-33102463

ABSTRACT

ß-ionone is a commercially attractive industrial fragrance produced naturally from the cleavage of the pigment ß-carotene in plants. While the production of this ionone is typically performed using chemical synthesis, environmentally friendly and consumer-oriented biotechnological production is gaining increasing attention. A convenient cell factory to address this demand is the yeast Saccharomyces cerevisiae. However, current ß-ionone titers and yields are insufficient for commercial bioproduction. In this work, we optimized S. cerevisiae for the accumulation of high amounts of ß-carotene and its subsequent conversion to ß-ionone. For this task, we integrated systematically the heterologous carotenogenic genes (CrtE, CrtYB and CrtI) from Xanthophyllomyces dendrorhous using markerless genome editing CRISPR/Cas9 technology; and evaluated the transcriptional unit architecture (bidirectional or tandem), integration site, and impact of gene dosage, first on ß-carotene accumulation, and later, on ß-ionone production. A single-copy insertion of the carotenogenic genes in high expression loci of the wild-type yeast CEN.Pk2 strain yielded 4 mg/gDCW of total carotenoids, regardless of the transcriptional unit architecture employed. Subsequent fine-tuning of the carotenogenic gene expression enabled reaching 16 mg/gDCW of total carotenoids, which was further increased to 32 mg/gDCW by alleviating the known pathway bottleneck catalyzed by the hydroxymethylglutaryl-CoA reductase (HMGR1). The latter yield represents the highest total carotenoid concentration reported to date in S. cerevisiae for a constitutive expression system. For ß-ionone synthesis, single and multiple copies of the carotene cleavage dioxygenase 1 (CCD1) gene from Petunia hybrida (PhCCD1) fused with a membrane destination peptide were expressed in the highest ß-carotene-producing strains, reaching up to 33 mg/L of ß-ionone in the culture medium after 72-h cultivation in shake flasks. Finally, interrogation of a contextualized genome-scale metabolic model of the producer strains pointed to PhCCD1 unspecific cleavage activity as a potentially limiting factor reducing ß-ionone production. Overall, the results of this work constitute a step toward the industrial production of this ionone and, more broadly, they demonstrate that biotechnological production of apocarotenoids is technically feasible.

5.
Molecules ; 25(15)2020 Jul 28.
Article in English | MEDLINE | ID: mdl-32731627

ABSTRACT

Malolactic fermentation (MLF) is responsible for the decarboxylation of l-malic into lactic acid in most red wines and some white wines. It reduces the acidity of wine, improves flavor complexity and microbiological stability. Despite its industrial interest, the MLF mechanism is not fully understood. The objective of this study was to provide new insights into the role of pH on the binding of malic acid to the malolactic enzyme (MLE) of Oenococcus oeni. To this end, sequence similarity networks and phylogenetic analysis were used to generate an MLE homology model, which was further refined by molecular dynamics simulations. The resulting model, together with quantum polarized ligand docking (QPLD), was used to describe the MLE binding pocket and pose of l-malic acid (MAL) and its l-malate (-1) and (-2) protonation states (MAL- and MAL2-, respectively). MAL2- has the lowest ∆Gbinding, followed by MAL- and MAL, with values of -23.8, -19.6, and -14.6 kJ/mol, respectively, consistent with those obtained by isothermal calorimetry thermodynamic (ITC) assays. Furthermore, molecular dynamics and MM/GBSA results suggest that only MAL2- displays an extended open conformation at the binding pocket, satisfying the geometrical requirements for Mn2+ coordination, a critical component of MLE activity. These results are consistent with the intracellular pH conditions of O. oeni cells-ranging from pH 5.8 to 6.1-where the enzymatic decarboxylation of malate occurs.


Subject(s)
Bacterial Proteins/chemistry , Lactic Acid/chemistry , Malate Dehydrogenase/chemistry , Malates/chemistry , Oenococcus/enzymology
6.
Metab Eng ; 59: 53-63, 2020 05.
Article in English | MEDLINE | ID: mdl-32001334

ABSTRACT

Microbial production of carotenoids has mainly focused towards a few products, such as ß-carotene, lycopene and astaxanthin. However, other less explored carotenoids, like violaxanthin, have also shown unique properties and promissory applications. Violaxanthin is a plant-derived epoxidated carotenoid with strong antioxidant activity and a key precursor of valuable compounds, such as fucoxanthin and ß-damascenone. In this study, we report for the first time the heterologous production of epoxycarotenoids in yeast. We engineered the yeast Saccharomyces cerevisiae following multi-level strategies for the efficient accumulation of violaxanthin. Starting from a ß-carotenogenic yeast strain, we first evaluated the performance of several ß-carotene hydroxylases (CrtZ), and zeaxanthin epoxidases (ZEP) from different species, together with their respective N-terminal truncated variants. The combined expression of CrtZ from Pantoea ananatis and truncated ZEP of Haematococcus lacustris showed the best performance and led to a yield of 1.6 mg/gDCW of violaxanthin. Further improvement of the epoxidase activity was achieved by promoting the transfer of reducing equivalents to ZEP by expressing several redox partner systems. The co-expression of the plant truncated ferredoxin-3, and truncated root ferredoxin oxidoreductase-1 resulted in a 2.2-fold increase in violaxanthin yield (3.2 mg/gDCW). Finally, increasing gene copy number of carotenogenic genes enabled reaching a final production of 7.3 mg/gDCW in shake flask cultures and batch bioreactors, which is the highest yield of microbially produced violaxanthin reported to date.


Subject(s)
Metabolic Engineering , Microorganisms, Genetically-Modified , Saccharomyces cerevisiae , Microorganisms, Genetically-Modified/genetics , Microorganisms, Genetically-Modified/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Xanthophylls/metabolism
7.
Microbiologyopen ; 9(3): e978, 2020 03.
Article in English | MEDLINE | ID: mdl-31944620

ABSTRACT

Most DNA assembly methods require bacterial amplification steps, which restrict its application to genes that can be cloned in the bacterial host without significant toxic effects. However, genes that cannot be cloned in bacteria do not necessarily exert toxic effects on the final host. In order to tackle this issue, we adapted two DNA assembly workflows for rapid, cloning-free construction and genomic integration of expression cassettes in Saccharomyces cerevisiae. One method is based on a modified Gibson assembly, while the other relies on a direct assembly and integration of linear PCR products by yeast homologous recombination. The methods require few simple experimental steps, and their performance was evaluated for the assembly and integration of unclonable zeaxanthin epoxidase expression cassettes in yeast. Results showed that up to 95% integration efficiency can be reached with minimal experimental effort. The presented workflows can be employed as rapid gene integration tools for yeast, especially tailored for integrating unclonable genes.


Subject(s)
Cloning, Molecular , Gene Expression , Genomics , Saccharomyces cerevisiae/genetics , Base Sequence , Cloning, Molecular/methods , Gene Order , Genetic Engineering , Genomics/methods , Homologous Recombination , Mutagenesis, Insertional , Plasmids/genetics , Workflow
8.
Metab Eng Commun ; 9: e00103, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31720218

ABSTRACT

Pichia pastoris is recognized as a biotechnological workhorse for recombinant protein expression. The metabolic performance of this microorganism depends on genetic makeup and culture conditions, amongst which the specific growth rate and oxygenation level are critical. Despite their importance, only their individual effects have been assessed so far, and thus their combined effects and metabolic consequences still remain to be elucidated. In this work, we present a comprehensive framework for revealing high-order (i.e., individual and combined) metabolic effects of the above parameters in glucose-limited continuous cultures of P. pastoris, using thaumatin production as a case study. Specifically, we employed a rational experimental design to calculate statistically significant metabolic effects from multiple chemostat data, which were later contextualized using a refined and highly predictive genome-scale metabolic model of this yeast under the simulated conditions. Our results revealed a negative effect of the oxygenation on the specific product formation rate (thaumatin), and a positive effect on the biomass yield. Notably, we identified a novel positive combined effect of both the specific growth rate and oxygenation level on the specific product formation rate. Finally, model predictions indicated an opposite relationship between the oxygenation level and the growth-associated maintenance energy (GAME) requirement, suggesting a linear GAME decrease of 0.56 mmol ATP/gDCW per each 1% increase in oxygenation level, which translated into a 44% higher metabolic cost under low oxygenation compared to high oxygenation. Overall, this work provides a systematic framework for mapping high-order metabolic effects of different culture parameters on the performance of a microbial cell factory. Particularly in this case, it provided valuable insights about optimal operational conditions for protein production in P. pastoris.

9.
Article in English | MEDLINE | ID: mdl-31380362

ABSTRACT

Robust fermentation performance of microbial cell factories is critical for successful scaling of a biotechnological process. From shake flask cultivations to industrial-scale bioreactors, consistent strain behavior is fundamental to achieve the production targets. To assert the importance of this feature, we evaluated the impact of the yeast strain design and construction method on process scalability -from shake flasks to bench-scale fed-batch fermentations- using two recombinant Saccharomyces cerevisiae strains capable of producing ß-carotene; SM14 and ßcar1.2 strains. SM14 strain, obtained previously from adaptive evolution experiments, was capable to accumulate up to 21 mg/gDCW of ß-carotene in 72 h shake flask cultures; while the ßcar1.2, constructed by overexpression of carotenogenic genes, only accumulated 5.8 mg/gDCW of carotene. Surprisingly, fed-batch cultivation of these strains in 1L bioreactors resulted in opposite performances. ßcar1.2 strain reached much higher biomass and ß-carotene productivities (1.57 g/L/h and 10.9 mg/L/h, respectively) than SM14 strain (0.48 g/L/h and 3.1 mg/L/h, respectively). Final ß-carotene titers were 210 and 750 mg/L after 80 h cultivation for SM14 and ßcar1.2 strains, respectively. Our results indicate that these substantial differences in fermentation parameters are mainly a consequence of the exacerbated Crabtree effect of the SM14 strain. We also found that the strategy used to integrate the carotenogenic genes into the chromosomes affected the genetic stability of strains, although the impact was significantly minor. Overall, our results indicate that shake flasks fermentation parameters are poor predictors of the fermentation performance under industrial-like conditions, and that appropriate construction designs and performance tests must be conducted to properly assess the scalability of the strain and the bioprocess.

10.
Food Chem ; 299: 125089, 2019 Nov 30.
Article in English | MEDLINE | ID: mdl-31319343

ABSTRACT

Synthesis of ß-ionone in recombinant Saccharomyces cerevisiae is limited by the efficiency of Carotenoid Cleavage Dioxygenases (CCD), membrane-tethered enzymes catalyzing the last step in the pathway. We performed in silico design and membrane affinity analysis, focused on single-point mutations of PhCCD1 to improve membrane anchoring. The resulting constructs were tested in a ß-carotene hyper-producing strain by comparing colony pigmentation against colonies transformed with native PhCCD1 and further analyzed by ß-ionone quantification via RP-HPLC. Two single-point mutants increased ß-ionone yields almost 3-fold when compared to native PhCCD1. We also aimed to improve substrate accessibility of PhCCD1 through the amino-terminal addition of membrane destination peptides directed towards the endoplasmic reticulum or plasma membrane. Yeast strains expressing peptide-PhCCD1 constructs showed ß-ionone yields up to 4-fold higher than the strain carrying the native enzyme. Our results demonstrate that protein engineering of CCDs significantly increases the yield of ß-ionone synthesized by metabolically engineered yeast.


Subject(s)
Carotenoids/metabolism , Dioxygenases/genetics , Dioxygenases/metabolism , Norisoprenoids/biosynthesis , Protein Engineering , Saccharomyces cerevisiae/metabolism , Metabolic Engineering , Saccharomyces cerevisiae/cytology , Saccharomyces cerevisiae/genetics
11.
Biotechnol J ; 14(9): e1800734, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31140756

ABSTRACT

Design and selection of efficient metabolic pathways is critical for the success of metabolic engineering endeavors. Convenient pathways should not only produce the target metabolite in high yields but also are required to be thermodynamically feasible under production conditions, and to prefer efficient enzymes. To support the design and selection of such pathways, different computational approaches have been proposed for exploring the feasible pathway space under many of the above constraints. In this review, an overview of recent constraint-based optimization frameworks for metabolic pathway prediction, as well as relevant pathway engineering case studies that highlight the importance of rational metabolic designs is presented. Despite the availability and suitability of in silico design tools for metabolic pathway engineering, scarce-although increasing-application of computational outcomes is found. Finally, challenges and limitations hindering the broad adoption and successful application of these tools in metabolic engineering projects are discussed.


Subject(s)
Metabolic Engineering/methods , Computational Biology/methods , Metabolic Networks and Pathways
12.
mBio ; 9(4)2018 07 31.
Article in English | MEDLINE | ID: mdl-30065085

ABSTRACT

Optogenetic switches permit accurate control of gene expression upon light stimulation. These synthetic switches have become a powerful tool for gene regulation, allowing modulation of customized phenotypes, overcoming the obstacles of chemical inducers, and replacing their use by an inexpensive resource: light. In this work, we implemented FUN-LOV, an optogenetic switch based on the photon-regulated interaction of WC-1 and VVD, two LOV (light-oxygen-voltage) blue-light photoreceptors from the fungus Neurospora crassa When tested in yeast, FUN-LOV yields light-controlled gene expression with exquisite temporal resolution and a broad dynamic range of over 1,300-fold, as measured by a luciferase reporter. We also tested the FUN-LOV switch for heterologous protein expression in Saccharomyces cerevisiae, where Western blot analysis confirmed strong induction upon light stimulation, surpassing by 2.5 times the levels achieved with a classic GAL4/galactose chemical-inducible system. Additionally, we utilized FUN-LOV to control the ability of yeast cells to flocculate. Light-controlled expression of the flocculin-encoding gene FLO1, by the FUN-LOV switch, yielded flocculation in light (FIL), whereas the light-controlled expression of the corepressor TUP1 provided flocculation in darkness (FID). Altogether, the results reveal the potential of the FUN-LOV optogenetic switch to control two biotechnologically relevant phenotypes such as heterologous protein expression and flocculation, paving the road for the engineering of new yeast strains for industrial applications. Importantly, FUN-LOV's ability to accurately manipulate gene expression, with a high temporal dynamic range, can be exploited in the analysis of diverse biological processes in various organisms.IMPORTANCE Optogenetic switches are molecular devices which allow the control of different cellular processes by light, such as gene expression, providing a versatile alternative to chemical inducers. Here, we report a novel optogenetic switch (FUN-LOV) based on the LOV domain interaction of two blue-light photoreceptors (WC-1 and VVD) from the fungus N. crassa In yeast cells, FUN-LOV allowed tight regulation of gene expression, with low background in darkness and a highly dynamic and potent control by light. We used FUN-LOV to optogenetically manipulate, in yeast, two biotechnologically relevant phenotypes, heterologous protein expression and flocculation, resulting in strains with potential industrial applications. Importantly, FUN-LOV can be implemented in diverse biological platforms to orthogonally control a multitude of cellular processes.


Subject(s)
Cell Adhesion , Gene Expression Regulation, Fungal/radiation effects , Optogenetics/methods , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/physiology , Photic Stimulation , Saccharomyces cerevisiae/radiation effects
13.
Food Chem ; 264: 164-171, 2018 Oct 30.
Article in English | MEDLINE | ID: mdl-29853362

ABSTRACT

Natural sweeteners, such as stevia and thaumatin, exert their sweet taste by specifically binding to sweet taste receptors. However, the molecular basis of their sweetening power remains to be ascertained. In the present study, we built a comparative model of the hT1R2 and hT1R3 subunits in order to characterize their interactions with natural, non-caloric sweeteners - from glycosylated terpenoids to sweet proteins - at the molecular level. The binding free energy between hT1R2-hT1R3 and sweeteners of different families shows a strong correlation with their sweetness intensity for both, small sweeteners (r = -0.89) and sweet proteins (r = -0.97). The correlation is further improved and generalized throughout all families of sweeteners evaluated, when EC50 values are used instead of relative intensities (r = -0.91). Altogether, these results contribute to a better understanding of the sweetness perception of these sweeteners, and promote the use of docking for better prediction of resulting sweetness.


Subject(s)
Receptors, G-Protein-Coupled/chemistry , Receptors, G-Protein-Coupled/metabolism , Sweetening Agents/chemistry , Sweetening Agents/pharmacology , Humans , Molecular Docking Simulation , Plant Proteins/chemistry , Plant Proteins/pharmacology , Stevia/chemistry
14.
J Pediatr ; 198: 265-272.e3, 2018 07.
Article in English | MEDLINE | ID: mdl-29730147

ABSTRACT

OBJECTIVE: To assess olfactory function in children and to create and validate an odor identification test to diagnose olfactory dysfunction in children, which we called the Universal Sniff (U-Sniff) test. STUDY DESIGN: This is a multicenter study involving 19 countries. The U-Sniff test was developed in 3 phases including 1760 children age 5-7 years. Phase 1: identification of potentially recognizable odors; phase 2: selection of odorants for the odor identification test; and phase 3: evaluation of the test and acquisition of normative data. Test-retest reliability was evaluated in a subgroup of children (n = 27), and the test was validated using children with congenital anosmia (n = 14). RESULTS: Twelve odors were familiar to children and, therefore, included in the U-Sniff test. Children scored a mean ± SD of 9.88 ± 1.80 points out of 12. Normative data was obtained and reported for each country. The U-Sniff test demonstrated a high test-retest reliability (r27 = 0.83, P < .001) and enabled discrimination between normosmia and children with congenital anosmia with a sensitivity of 100% and specificity of 86%. CONCLUSIONS: The U-Sniff is a valid and reliable method of testing olfaction in children and can be used internationally.


Subject(s)
Odorants , Olfaction Disorders/congenital , Olfaction Disorders/diagnosis , Smell/physiology , Child , Child, Preschool , Female , Humans , Internationality , Male , Reproducibility of Results , Sensitivity and Specificity
15.
Food Res Int ; 108: 595-603, 2018 06.
Article in English | MEDLINE | ID: mdl-29735095

ABSTRACT

We developed a sensory-based methodology to aromatically enrich wines using different aromatic fractions recovered during fermentations of Sauvignon Blanc must. By means of threshold determination and generic descriptive analysis using a trained sensory panel, the aromatic fractions were characterized, selected, and clustered. The selected fractions were grouped, re-assessed, and validated by the trained panel. A consumer panel assessed overall liking and answered a CATA question on some enriched wines and their ideal sample. Differences in elicitation rates between non-enriched and enriched wines with respect to the ideal product highlighted product optimization and the role of aromatic enrichment. Enrichment with aromatic fractions increased the aromatic quality of wines and enhanced consumer appreciation.


Subject(s)
Consumer Behavior , Odorants/analysis , Olfactory Perception , Smell , Taste Perception , Taste , Wine/analysis , Adult , Aged , Choice Behavior , Female , Fermentation , Food Microbiology/methods , Humans , Judgment , Male , Middle Aged , Saccharomyces cerevisiae/metabolism , Wine/microbiology , Young Adult
16.
Front Microbiol ; 9: 291, 2018.
Article in English | MEDLINE | ID: mdl-29545779

ABSTRACT

The effect of ethanol on the metabolism of Oenococcus oeni, the bacterium responsible for the malolactic fermentation (MLF) of wine, is still scarcely understood. Here, we characterized the global metabolic response in O. oeni PSU-1 to increasing ethanol contents, ranging from 0 to 12% (v/v). We first optimized a wine-like, defined culture medium, MaxOeno, to allow sufficient bacterial growth to be able to quantitate different metabolites in batch cultures of O. oeni. Then, taking advantage of the recently reconstructed genome-scale metabolic model iSM454 for O. oeni PSU-1 and the resulting experimental data, we determined the redistribution of intracellular metabolic fluxes, under the different ethanol conditions. Four growth phases were clearly identified during the batch cultivation of O. oeni PSU-1 strain, according to the temporal consumption of malic and citric acids, sugar and amino acids uptake, and biosynthesis rates of metabolic products - biomass, erythritol, mannitol and acetic acid, among others. We showed that, under increasing ethanol conditions, O. oeni favors anabolic reactions related with cell maintenance, as the requirements of NAD(P)+ and ATP increased with ethanol content. Specifically, cultures containing 9 and 12% ethanol required 10 and 17 times more NGAM (non-growth associated maintenance ATP) during phase I, respectively, than cultures without ethanol. MLF and citric acid consumption are vital at high ethanol concentrations, as they are the main source for proton extrusion, allowing higher ATP production by F0F1-ATPase, the main route of ATP synthesis under these conditions. Mannitol and erythritol synthesis are the main sources of NAD(P)+, countervailing for 51-57% of its usage, as predicted by the model. Finally, cysteine shows the fastest specific consumption rate among the amino acids, confirming its key role for bacterial survival under ethanol stress. As a whole, this study provides a global insight into how ethanol content exerts a differential physiological response in O. oeni PSU-1 strain. It will help to design better strategies of nutrient addition to achieve a successful MLF of wine.

17.
FEMS Yeast Res ; 17(4)2017 06 01.
Article in English | MEDLINE | ID: mdl-28854674

ABSTRACT

Farnesyl diphosphate synthase (FPPS) is a key enzyme responsible for the supply of isoprenoid precursors for several essential metabolites, including sterols, dolichols and ubiquinone. In Saccharomyces cerevisiae, FPPS catalyzes the sequential condensation of two molecules of isopentenyl diphosphate (IPP) with dimethylallyl diphosphate (DMAPP), producing geranyl diphosphate (GPP) and farnesyl diphosphate (FPP). Critical amino acid residues that determine product chain length were determined by a comparative study of strict GPP synthases versus strict FPPS. In silico ΔΔG, i.e. differential binding energy between a protein and two different ligands-of yeast FPPS mutants was evaluated, and F96, A99 and E165 residues were identified as key determinants for product selectivity. A99X variants were evaluated in vivo, S. cerevisiae strains carrying A99R and A99H variants showed significant differences on GPP concentrations and specific growth rates. The FPPS A99T variant produced unquantifiable amounts of FPP and no effect on GPP production was observed. Strains carrying A99Q, A99Y and A99K FPPS accumulated high amounts of DMAPP-IPP, with a decrease in GPP and FPP. Our results demonstrated the relevance of the first residue before FARM (First Aspartate Rich Motif) over substrate consumption and product specificity of S. cerevisiae FPPS in vivo. The presence of A99H significantly modified product selectivity and appeared to be relevant for GPP synthesis.


Subject(s)
Gene Expression Regulation, Fungal , Geranyltranstransferase/chemistry , Point Mutation , Saccharomyces cerevisiae/enzymology , Terpenes/metabolism , Amino Acid Motifs , Amino Acid Sequence , Amino Acid Substitution , Binding Sites , Diphosphates/metabolism , Diterpenes/metabolism , Geranyltranstransferase/genetics , Geranyltranstransferase/metabolism , Hemiterpenes/metabolism , Kinetics , Metabolic Engineering , Molecular Docking Simulation , Organophosphorus Compounds/metabolism , Polyisoprenyl Phosphates/metabolism , Protein Binding , Protein Interaction Domains and Motifs , Protein Structure, Secondary , Saccharomyces cerevisiae/genetics , Sequence Alignment , Sequence Homology, Amino Acid , Sesquiterpenes/metabolism , Substrate Specificity , Thermodynamics
18.
Front Microbiol ; 8: 534, 2017.
Article in English | MEDLINE | ID: mdl-28424673

ABSTRACT

Oenococcus oeni is the main responsible agent for malolactic fermentation in wine, an unpredictable and erratic process in winemaking. To address this, we have constructed and exhaustively curated the first genome-scale metabolic model of Oenococcus oeni, comprising 660 reactions, 536 metabolites and 454 genes. In silico experiments revealed that nutritional requirements are predicted with an accuracy of 93%, while 14 amino acids were found to be essential for the growth of this bacterial species. When the model was applied to determine the non-growth associated maintenance, results showed that O. oeni grown at 12% ethanol concentration spent 30 times more ATP to stay alive than in the absence of ethanol. Most of this ATP is employed for extruding protons outside of the cell. A positive relationship was also found between specific consumption rates of fructose, amino acids, oxygen, and malic acid and the specific production rates of erythritol, lactate, and acetate, according to the ethanol content of the medium. The metabolic model reconstructed here represents a unique tool to predict the successful completion of wine malolactic fermentation carried out either by different strains of Oenococcus oeni, as well as at any particular physico-chemical composition of wine. It will also allow the development of consortium metabolic models that could be applied to winemaking to simulate and understand the interactions between O. oeni and other microorganisms that share this ecological niche.

19.
Appl Microbiol Biotechnol ; 101(7): 2629-2640, 2017 Apr.
Article in English | MEDLINE | ID: mdl-28210796

ABSTRACT

Light is increasingly recognized as an efficient means of controlling diverse biological processes with high spatiotemporal resolution. Optogenetic switches are molecular devices for regulating light-controlled gene expression, protein localization, signal transduction and protein-protein interactions. Such molecular components have been mainly developed through the use of photoreceptors, which upon light stimulation undergo conformational changes passing to an active state. The current repertoires of optogenetic switches include red, blue and UV-B light photoreceptors and have been implemented in a broad spectrum of biological platforms. In this review, we revisit different optogenetic switches that have been used in diverse biological platforms, with emphasis on those used for light-controlled gene expression in the budding yeast Saccharomyces cerevisiae. The implementation of these switches overcomes the use of traditional chemical inducers, allowing precise control of gene expression at lower costs, without leaving chemical traces, and positively impacting the production of high-value metabolites and heterologous proteins. Additionally, we highlight the potential of utilizing this technology beyond laboratory strains, by optimizing it for use in yeasts tamed for industrial processes. Finally, we discuss how fungal photoreceptors could serve as a source of biological parts for the development of novel optogenetic switches with improved characteristics. Although optogenetic tools have had a strong impact on basic research, their use in applied sciences is still undervalued. Therefore, the invitation for the future is to utilize this technology in biotechnological and industrial settings.


Subject(s)
Gene Expression Regulation, Fungal , Light , Optogenetics , Saccharomyces cerevisiae/genetics , Gene Expression , Industrial Microbiology , Photoreceptors, Microbial/genetics , Signal Transduction/genetics , Synthetic Biology/methods
20.
BMC Syst Biol ; 11(1): 27, 2017 02 21.
Article in English | MEDLINE | ID: mdl-28222737

ABSTRACT

BACKGROUND: Pichia pastoris shows physiological advantages in producing recombinant proteins, compared to other commonly used cell factories. This yeast is mostly grown in dynamic cultivation systems, where the cell's environment is continuously changing and many variables influence process productivity. In this context, a model capable of explaining and predicting cell behavior for the rational design of bioprocesses is highly desirable. Currently, there are five genome-scale metabolic reconstructions of P. pastoris which have been used to predict extracellular cell behavior in stationary conditions. RESULTS: In this work, we assembled a dynamic genome-scale metabolic model for glucose-limited, aerobic cultivations of Pichia pastoris. Starting from an initial model structure for batch and fed-batch cultures, we performed pre/post regression diagnostics to ensure that model parameters were identifiable, significant and sensitive. Once identified, the non-relevant ones were iteratively fixed until a priori robust modeling structures were found for each type of cultivation. Next, the robustness of these reduced structures was confirmed by calibrating the model with new datasets, where no sensitivity, identifiability or significance problems appeared in their parameters. Afterwards, the model was validated for the prediction of batch and fed-batch dynamics in the studied conditions. Lastly, the model was employed as a case study to analyze the metabolic flux distribution of a fed-batch culture and to unravel genetic and process engineering strategies to improve the production of recombinant Human Serum Albumin (HSA). Simulation of single knock-outs indicated that deviation of carbon towards cysteine and tryptophan formation improves HSA production. The deletion of methylene tetrahydrofolate dehydrogenase could increase the HSA volumetric productivity by 630%. Moreover, given specific bioprocess limitations and strain characteristics, the model suggests that implementation of a decreasing specific growth rate during the feed phase of a fed-batch culture results in a 25% increase of the volumetric productivity of the protein. CONCLUSION: In this work, we formulated a dynamic genome scale metabolic model of Pichia pastoris that yields realistic metabolic flux distributions throughout dynamic cultivations. The model can be calibrated with experimental data to rationally propose genetic and process engineering strategies to improve the performance of a P. pastoris strain of interest.


Subject(s)
Genome, Fungal/genetics , Models, Biological , Pichia/genetics , Pichia/metabolism , Aerobiosis , Batch Cell Culture Techniques , Extracellular Space/drug effects , Extracellular Space/metabolism , Genomics , Glucose/pharmacology , Humans , Kinetics , Pichia/drug effects , Pichia/growth & development , Serum Albumin/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...