Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Language
Publication year range
1.
Cell Rep ; 42(3): 112273, 2023 03 28.
Article in English | MEDLINE | ID: mdl-36933216

ABSTRACT

Chromatin regulation and alternative splicing are both critical mechanisms guiding gene expression. Studies have demonstrated that histone modifications can influence alternative splicing decisions, but less is known about how alternative splicing may impact chromatin. Here, we demonstrate that several genes encoding histone-modifying enzymes are alternatively spliced downstream of T cell signaling pathways, including HDAC7, a gene previously implicated in controlling gene expression and differentiation in T cells. Using CRISPR-Cas9 gene editing and cDNA expression, we show that differential inclusion of HDAC7 exon 9 controls the interaction of HDAC7 with protein chaperones, resulting in changes to histone modifications and gene expression. Notably, the long isoform, which is induced by the RNA-binding protein CELF2, promotes expression of several critical T cell surface proteins including CD3, CD28, and CD69. Thus, we demonstrate that alternative splicing of HDAC7 has a global impact on histone modification and gene expression that contributes to T cell development.


Subject(s)
Histone Code , Histones , 14-3-3 Proteins/genetics , Alternative Splicing/genetics , Chromatin , Gene Expression , Histone Deacetylases/metabolism
2.
Immunohorizons ; 5(10): 884-897, 2021 10 29.
Article in English | MEDLINE | ID: mdl-34716181

ABSTRACT

Protein arginine methyltransferase (PRMT) 5 is the type 2 methyltransferase catalyzing symmetric dimethylation of arginine. PRMT5 inhibition or deletion in CD4 Th cells reduces TCR engagement-induced IL-2 production and Th cell expansion and confers protection against experimental autoimmune encephalomyelitis, the animal model of multiple sclerosis. However, the mechanisms by which PRMT5 modulates Th cell proliferation are still not completely understood, and neither are the methylation targets in T cells. In this manuscript, we uncover the role of PRMT5 on alternative splicing in activated mouse T cells and identify several targets of PRMT5 symmetric dimethylation involved in splicing. In addition, we find a possible link between PRMT5-mediated alternative splicing of transient receptor potential cation channel subfamily M member 4 (Trpm4) and TCR/NFAT signaling/IL-2 production. This understanding may guide development of drugs targeting these processes to benefit patients with T cell-mediated diseases.


Subject(s)
Alternative Splicing/immunology , CD4-Positive T-Lymphocytes/immunology , Protein-Arginine N-Methyltransferases/metabolism , TRPM Cation Channels/genetics , Animals , CD4-Positive T-Lymphocytes/metabolism , Calcium/metabolism , Cells, Cultured , Female , Gene Knockdown Techniques , Lymphocyte Activation/genetics , Male , Methylation , Mice , Models, Animal , NFATC Transcription Factors/metabolism , Primary Cell Culture , Protein-Arginine N-Methyltransferases/genetics , RNA-Seq , Receptors, Antigen, T-Cell/metabolism , Signal Transduction/genetics , Signal Transduction/immunology
3.
Genome Res ; 29(12): 2046-2055, 2019 12.
Article in English | MEDLINE | ID: mdl-31727681

ABSTRACT

Alternative pre-mRNA splicing has long been proposed to contribute greatly to proteome complexity. However, the extent to which mature mRNA isoforms are successfully translated into protein remains controversial. Here, we used high-throughput RNA sequencing and mass spectrometry (MS)-based proteomics to better evaluate the translation of alternatively spliced mRNAs. To increase proteome coverage and improve protein quantitation, we optimized cell fractionation and sample processing steps at both the protein and peptide level. Furthermore, we generated a custom peptide database trained on analysis of RNA-seq data with MAJIQ, an algorithm optimized to detect and quantify differential and unannotated splice junction usage. We matched tandem mass spectra acquired by data-dependent acquisition (DDA) against our custom RNA-seq based database, as well as SWISS-PROT and RefSeq databases to improve identification of splicing-derived proteoforms by 28% compared with use of the SWISS-PROT database alone. Altogether, we identified peptide evidence for 554 alternate proteoforms corresponding to 274 genes. Our increased depth and detection of proteins also allowed us to track changes in the transcriptome and proteome induced by T-cell stimulation, as well as fluctuations in protein subcellular localization. In sum, our data here confirm that use of generic databases in proteomic studies underestimates the number of spliced mRNA isoforms that are translated into protein and provides a workflow that improves isoform detection in large-scale proteomic experiments.


Subject(s)
Algorithms , Alternative Splicing , Databases, Nucleic Acid , Gene Expression Profiling , High-Throughput Nucleotide Sequencing , Peptides , RNA Isoforms , Humans , Peptides/genetics , Peptides/metabolism , Protein Isoforms/biosynthesis , Protein Isoforms/genetics , RNA Isoforms/biosynthesis , RNA Isoforms/genetics , Tandem Mass Spectrometry
4.
Cell Rep ; 28(11): 2795-2806.e3, 2019 09 10.
Article in English | MEDLINE | ID: mdl-31509743

ABSTRACT

The 3' UTR (UTR) of human mRNAs plays a critical role in controlling protein expression and function. Importantly, 3' UTRs of human messages are not invariant for each gene but rather are shaped by alternative polyadenylation (APA) in a cell state-dependent manner, including in response to T cell activation. However, the proteins and mechanisms driving APA regulation remain poorly understood. Here we show that the RNA-binding protein CELF2 controls APA of its own message in a signal-dependent manner by competing with core enhancers of the polyadenylation machinery for binding to RNA. We further show that CELF2 binding overlaps with APA enhancers transcriptome-wide, and almost half of 3' UTRs that undergo T cell signaling-induced APA are regulated in a CELF2-dependent manner. These studies thus reveal CELF2 to be a critical regulator of 3' UTR identity in T cells and demonstrate an additional mechanism for CELF2 in regulating polyadenylation site choice.


Subject(s)
CELF Proteins/metabolism , Gene Expression Regulation/genetics , Nerve Tissue Proteins/metabolism , Polyadenylation/genetics , RNA-Binding Proteins/metabolism , 3' Untranslated Regions , CELF Proteins/genetics , Cell Line, Tumor , Cleavage And Polyadenylation Specificity Factor/genetics , Cleavage And Polyadenylation Specificity Factor/metabolism , Enhancer Elements, Genetic , Humans , Introns/genetics , Nerve Tissue Proteins/genetics , Protein Binding , RNA Splicing Factors/genetics , RNA Splicing Factors/metabolism , RNA-Seq , Repressor Proteins/genetics , Repressor Proteins/metabolism , Signal Transduction/genetics , Splicing Factor U2AF/genetics , Splicing Factor U2AF/metabolism , Transcriptome
5.
Genome Res ; 29(6): 978-987, 2019 06.
Article in English | MEDLINE | ID: mdl-31123082

ABSTRACT

DNA and histone proteins define the structure and composition of chromatin. Histone posttranslational modifications (PTMs) are covalent chemical groups capable of modeling chromatin accessibility, mostly due to their ability in recruiting enzymes responsible for DNA readout and remodeling. Mass spectrometry (MS)-based proteomics is the methodology of choice for large-scale identification and quantification of protein PTMs, including histones. High sensitivity proteomics requires online MS coupling with relatively low throughput and poorly robust nano-liquid chromatography (nanoLC) and, for histone proteins, a 2-d sample preparation that includes histone purification, derivatization, and digestion. We present a new protocol that achieves quantitative data on about 200 histone PTMs from tissue or cell lines in 7 h from start to finish. This protocol includes 4 h of histone extraction, 3 h of derivatization and digestion, and only 1 min of MS analysis via direct injection (DI-MS). We demonstrate that this sample preparation can be parallelized for 384 samples by using multichannel pipettes and 96-well plates. We also engineered the sequence of a synthetic "histone-like" peptide to spike into the sample, of which derivatization and digestion benchmarks the quality of the sample preparation. We ensure that DI-MS does not introduce biases in histone peptide ionization as compared to nanoLC-MS/MS by producing and analyzing a library of synthetically modified histone peptides mixed in equal molarity. Finally, we introduce EpiProfileLite for comprehensive analysis of this new data type. Altogether, our workflow is suitable for high-throughput screening of >1000 samples per day using a single mass spectrometer.


Subject(s)
Histone Code , Histones/metabolism , Mass Spectrometry , Protein Processing, Post-Translational , Amino Acid Sequence , Mass Spectrometry/methods , Mass Spectrometry/standards , Peptides/chemical synthesis , Peptides/metabolism , Proteomics/methods , Quality Control , Reproducibility of Results , Workflow
6.
Genome Res ; 29: 978-987, 2019.
Article in English | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: but-ib17331

ABSTRACT

DNA and histone proteins define the structure and composition of chromatin. Histone post-translational modifications (PTMs) are covalent chemical groups capable of modeling chromatin accessibility, mostly due to their ability in recruiting enzymes responsible for DNA readout and remodeling. Mass spectrometry (MS)-based proteomics is the methodology of choice for large-scale identification and quantification of protein PTMs, including histones. High sensitive proteomics requires online MS coupling with relatively low throughput and poorly robust nano-liquid chromatography (nanoLC) and, for histone proteins, a 2-day sample preparation that includes histone purification, derivatization and digestion. We present a new protocol that achieves quantitative data on about 200 histone PTMs from tissue or cell lines in 7 hours from start to finish. This protocol includes 4 hours of histone extraction, 3 hours of derivatization and digestion, and only 1 minute of MS analysis via direct injection (DI-MS). We demonstrate that this sample preparation can be parallelized for 384 samples by using multichannel pipettes and 96-well plates. We also engineered the sequence of a synthetic "histone-like" peptide to spike into the sample, of which derivatization and digestion benchmarks the quality of the sample preparation. We ensure that DI-MS does not introduce biases in histone peptide ionization as compared to nanoLC-MS/MS by producing and analyzing a library of synthetically modified histone peptides mixed in equal molarity. Finally, we introduce EpiProfileLite for comprehensive analysis of this new data type. Altogether, our workflow is suitable for high throughput screening of >1,000 samples per day using a single mass spectrometer

7.
Genome res. ; 29(6): p. 978-987, 2019.
Article in English | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: but-ib16051

ABSTRACT

DNA and histone proteins define the structure and composition of chromatin. Histone posttranslational modifications (PTMs) are covalent chemical groups capable of modeling chromatin accessibility, mostly due to their ability in recruiting enzymes responsible for DNA readout and remodeling. Mass spectrometry (MS)-based proteomics is the methodology of choice for large-scale identification and quantification of protein PTMs, including histones. High sensitivity proteomics requires online MS coupling with relatively low throughput and poorly robust nano-liquid chromatography (nanoLC) and, for histone proteins, a 2-d sample preparation that includes histone purification, derivatization, and digestion. We present a new protocol that achieves quantitative data on about 200 histone PTMs from tissue or cell lines in 7 h from start to finish. This protocol includes 4 h of histone extraction, 3 h of derivatization and digestion, and only 1 min of MS analysis via direct injection (DI-MS). We demonstrate that this sample preparation can be parallelized for 384 samples by using multichannel pipettes and 96-well plates. We also engineered the sequence of a synthetic "histone-like" peptide to spike into the sample, of which derivatization and digestion benchmarks the quality of the sample preparation. We ensure that DI-MS does not introduce biases in histone peptide ionization as compared to nanoLC-MS/MS by producing and analyzing a library of synthetically modified histone peptides mixed in equal molarity. Finally, we introduce EpiProfileLite for comprehensive analysis of this new data type. Altogether, our workflow is suitable for high-throughput screening of >1000 samples per day using a single mass spectrometer.

8.
Genome res, v. 29, n. 6, p. 978-987, jul. 2019
Article in English | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-2774

ABSTRACT

DNA and histone proteins define the structure and composition of chromatin. Histone posttranslational modifications (PTMs) are covalent chemical groups capable of modeling chromatin accessibility, mostly due to their ability in recruiting enzymes responsible for DNA readout and remodeling. Mass spectrometry (MS)-based proteomics is the methodology of choice for large-scale identification and quantification of protein PTMs, including histones. High sensitivity proteomics requires online MS coupling with relatively low throughput and poorly robust nano-liquid chromatography (nanoLC) and, for histone proteins, a 2-d sample preparation that includes histone purification, derivatization, and digestion. We present a new protocol that achieves quantitative data on about 200 histone PTMs from tissue or cell lines in 7 h from start to finish. This protocol includes 4 h of histone extraction, 3 h of derivatization and digestion, and only 1 min of MS analysis via direct injection (DI-MS). We demonstrate that this sample preparation can be parallelized for 384 samples by using multichannel pipettes and 96-well plates. We also engineered the sequence of a synthetic "histone-like" peptide to spike into the sample, of which derivatization and digestion benchmarks the quality of the sample preparation. We ensure that DI-MS does not introduce biases in histone peptide ionization as compared to nanoLC-MS/MS by producing and analyzing a library of synthetically modified histone peptides mixed in equal molarity. Finally, we introduce EpiProfileLite for comprehensive analysis of this new data type. Altogether, our workflow is suitable for high-throughput screening of >1000 samples per day using a single mass spectrometer.

9.
Genes Dev ; 32(17-18): 1103-1104, 2018 09 01.
Article in English | MEDLINE | ID: mdl-30181358

ABSTRACT

Alternative splicing (AS) of pre-mRNAs is a ubiquitous process in mammals that is tightly regulated in a cell type- and cell state-dependent manner. However, the details of how splicing is regulated to impact specific cell fate decisions remains incompletely understood. A study by Yamazaki and colleagues (pp. 1161-1174) in this issue of Genes & Development provides exciting new insight into the role and regulation of splicing in the maintenance of pluripotency of human embryonic stem cells (hESCs). In brief, they show that AS of several genes is robustly regulated upon differentiation of hESCs. One of these genes, T-cell factor 3 (TCF3), is regulated at least in part through the activity of heterogeneous nuclear ribonucleoproteins H1 and F (hnRNP H/F) to control the mutually exclusive expression of the encoded E12 and E47 transcription regulators. The investigators demonstrate that reduced expression of hnRNP H/F favors expression of E47, which in turn decreases E-cadherin expression to promote hESC differentiation. In contrast, high levels of hnRNP H/F induce expression of E12 to maintain pluripotency. Thus, this work provides at least one new link between AS and control of human stem cell fate and suggests a broader role of splicing in pluripotency.


Subject(s)
Alternative Splicing , Heterogeneous-Nuclear Ribonucleoprotein Group F-H , Animals , Cadherins , Cell Differentiation , Humans , RNA Precursors
SELECTION OF CITATIONS
SEARCH DETAIL
...