Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Nat Commun ; 15(1): 3764, 2024 May 04.
Article in English | MEDLINE | ID: mdl-38704361

ABSTRACT

Crohn disease (CD) burden has increased with globalization/urbanization, and the rapid rise is attributed to environmental changes rather than genetic drift. The Study Of Urban and Rural CD Evolution (SOURCE, n = 380) has considered diet-omics domains simultaneously to detect complex interactions and identify potential beneficial and pathogenic factors linked with rural-urban transition and CD. We characterize exposures, diet, ileal transcriptomics, metabolomics, and microbiome in newly diagnosed CD patients and controls in rural and urban China and Israel. We show that time spent by rural residents in urban environments is linked with changes in gut microbial composition and metabolomics, which mirror those seen in CD. Ileal transcriptomics highlights personal metabolic and immune gene expression modules, that are directly linked to potential protective dietary exposures (coffee, manganese, vitamin D), fecal metabolites, and the microbiome. Bacteria-associated metabolites are primarily linked with host immune modules, whereas diet-linked metabolites are associated with host epithelial metabolic functions.


Subject(s)
Crohn Disease , Diet , Gastrointestinal Microbiome , Rural Population , Urban Population , Crohn Disease/microbiology , Crohn Disease/genetics , Humans , Male , Female , China/epidemiology , Adult , Israel/epidemiology , Metabolomics , Cohort Studies , Middle Aged , Feces/microbiology , Ileum/microbiology , Ileum/metabolism , Transcriptome , Young Adult
2.
Cell Metab ; 36(1): 116-129.e7, 2024 01 02.
Article in English | MEDLINE | ID: mdl-38171331

ABSTRACT

Metabolic dysfunction-associated steatotic liver disease (MASLD) affects one-third of the global population. Understanding the metabolic pathways involved can provide insights into disease progression and treatment. Untargeted metabolomics of livers from mice with early-stage steatosis uncovered decreased methylated metabolites, suggesting altered one-carbon metabolism. The levels of glycine, a central component of one-carbon metabolism, were lower in mice with hepatic steatosis, consistent with clinical evidence. Stable-isotope tracing demonstrated that increased serine synthesis from glycine via reverse serine hydroxymethyltransferase (SHMT) is the underlying cause for decreased glycine in steatotic livers. Consequently, limited glycine availability in steatotic livers impaired glutathione synthesis under acetaminophen-induced oxidative stress, enhancing acute hepatotoxicity. Glycine supplementation or hepatocyte-specific ablation of the mitochondrial SHMT2 isoform in mice with hepatic steatosis mitigated acetaminophen-induced hepatotoxicity by supporting de novo glutathione synthesis. Thus, early metabolic changes in MASLD that limit glycine availability sensitize mice to xenobiotics even at the reversible stage of this disease.


Subject(s)
Chemical and Drug Induced Liver Injury , Fatty Liver , Animals , Mice , Acetaminophen/toxicity , Carbon , Glutathione/metabolism , Glycine/metabolism , Glycine Hydroxymethyltransferase/metabolism , Serine/metabolism
3.
PLoS Genet ; 20(1): e1011054, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38236837

ABSTRACT

Living in dynamic environments such as the social domain, where interaction with others determines the reproductive success of individuals, requires the ability to recognize opportunities to obtain natural rewards and cope with challenges that are associated with achieving them. As such, actions that promote survival and reproduction are reinforced by the brain reward system, whereas coping with the challenges associated with obtaining these rewards is mediated by stress-response pathways, the activation of which can impair health and shorten lifespan. While much research has been devoted to understanding mechanisms underlying the way by which natural rewards are processed by the reward system, less attention has been given to the consequences of failure to obtain a desirable reward. As a model system to study the impact of failure to obtain a natural reward, we used the well-established courtship suppression paradigm in Drosophila melanogaster as means to induce repeated failures to obtain sexual reward in male flies. We discovered that beyond the known reduction in courtship actions caused by interaction with non-receptive females, repeated failures to mate induce a stress response characterized by persistent motivation to obtain the sexual reward, reduced male-male social interaction, and enhanced aggression. This frustrative-like state caused by the conflict between high motivation to obtain sexual reward and the inability to fulfill their mating drive impairs the capacity of rejected males to tolerate stressors such as starvation and oxidative stress. We further show that sensitivity to starvation and enhanced social arousal is mediated by the disinhibition of a small population of neurons that express receptors for the fly homologue of neuropeptide Y. Our findings demonstrate for the first time the existence of social stress in flies and offers a framework to study mechanisms underlying the crosstalk between reward, stress, and reproduction in a simple nervous system that is highly amenable to genetic manipulation.


Subject(s)
Drosophila melanogaster , Neuropeptides , Sexual Behavior, Animal , Humans , Animals , Female , Male , Drosophila melanogaster/genetics , Sexual Behavior, Animal/physiology , Reproduction/genetics , Reward , Neurons/metabolism
4.
ERJ Open Res ; 9(5)2023 Sep.
Article in English | MEDLINE | ID: mdl-37908399

ABSTRACT

COPD is a heterogeneous disorder that shows diverse clinical presentations (phenotypes and "treatable traits") and biological mechanisms (endotypes). This heterogeneity implies that to carry out a more personalised clinical management, it is necessary to classify each patient accurately. With this objective, and in addition to clinical features, it would be very useful to have well-defined biological markers. The search for these markers may either be done through more conventional laboratory and hypothesis-driven techniques or relatively blind high-throughput methods, with the omics approaches being suitable for the latter. Metabolomics is the science that studies biological processes through their metabolites, using various techniques such as gas and liquid chromatography, mass spectrometry and nuclear magnetic resonance. The most relevant metabolomics studies carried out in COPD highlight the importance of metabolites involved in pathways directly related to proteins (peptides and amino acids), nucleic acids (nitrogenous bases and nucleosides), and lipids and their derivatives (especially fatty acids, phospholipids, ceramides and eicosanoids). These findings indicate the relevance of inflammatory-immune processes, oxidative stress, increased catabolism and alterations in the energy production. However, some specific findings have also been reported for different COPD phenotypes, demographic characteristics of the patients, disease progression profiles, exacerbations, systemic manifestations and even diverse treatments. Unfortunately, the studies carried out to date have some limitations and shortcomings and there is still a need to define clear metabolomic profiles with clinical utility for the management of COPD and its implicit heterogeneity.

5.
Proc Natl Acad Sci U S A ; 120(42): e2302780120, 2023 10 17.
Article in English | MEDLINE | ID: mdl-37812701

ABSTRACT

Brain L-serine is critical for neurodevelopment and is thought to be synthesized solely from glucose. In contrast, we found that the influx of L-serine across the blood-brain barrier (BBB) is essential for brain development. We identified the endothelial Slc38a5, previously thought to be a glutamine transporter, as an L-serine transporter expressed at the BBB in early postnatal life. Young Slc38a5 knockout (KO) mice exhibit developmental alterations and a decrease in brain L-serine and D-serine, without changes in serum or liver amino acids. Slc38a5-KO brains exhibit accumulation of neurotoxic deoxysphingolipids, synaptic and mitochondrial abnormalities, and decreased neurogenesis at the dentate gyrus. Slc38a5-KO pups exhibit motor impairments that are affected by the administration of L-serine at concentrations that replenish the serine pool in the brain. Our results highlight a critical role of Slc38a5 in supplying L-serine via the BBB for proper brain development.


Subject(s)
Blood-Brain Barrier , Brain , Mice , Animals , Blood-Brain Barrier/metabolism , Brain/metabolism , Biological Transport , Ion Transport , Serine/metabolism , Mice, Knockout
6.
Diabetologia ; 66(10): 1925-1942, 2023 10.
Article in English | MEDLINE | ID: mdl-37480416

ABSTRACT

AIM/HYPOTHESIS: Hyperglycaemia is associated with alpha cell dysfunction, leading to dysregulated glucagon secretion in type 1 and type 2 diabetes; however, the mechanisms involved are still elusive. The nutrient sensor mammalian target of rapamycin complex 1 (mTORC1) plays a major role in the maintenance of alpha cell mass and function. We studied the regulation of alpha cell mTORC1 by nutrients and its role in the development of hyperglucagonaemia in diabetes. METHODS: Alpha cell mTORC1 activity was assessed by immunostaining for phosphorylation of its downstream target, the ribosomal protein S6, and glucagon, followed by confocal microscopy on pancreatic sections and flow cytometry on dispersed human and mouse islets and the alpha cell line, αTC1-6. Metabolomics and metabolic flux were studied by 13C glucose labelling in 2.8 or 16.7 mmol/l glucose followed by LC-MS analysis. To study the role of mTORC1 in mediating hyperglucagonaemia in diabetes, we generated an inducible alpha cell-specific Rptor knockout in the Akita mouse model of diabetes and tested the effects on glucose tolerance by IPGTT and on glucagon secretion. RESULTS: mTORC1 activity was increased in alpha cells from diabetic Akita mice in parallel to the development of hyperglycaemia and hyperglucagonaemia (two- to eightfold increase). Acute exposure of mouse and human islets to amino acids stimulated alpha cell mTORC1 (3.5-fold increase), whereas high glucose concentrations inhibited mTORC1 (1.4-fold decrease). The mTORC1 response to glucose was abolished in human and mouse diabetic alpha cells following prolonged islet exposure to high glucose levels, resulting in sustained activation of mTORC1, along with increased glucagon secretion. Metabolomics and metabolic flux analysis showed that exposure to high glucose levels enhanced glycolysis, glucose oxidation and the synthesis of glucose-derived amino acids. In addition, chronic exposure to high glucose levels increased the expression of Slc7a2 and Slc38a4, which encode amino acid transporters, as well as the levels of branched-chain amino acids and methionine cycle metabolites (~1.3-fold increase for both). Finally, conditional Rptor knockout in alpha cells from adult diabetic mice inhibited mTORC1, thereby inhibiting glucagon secretion (~sixfold decrease) and improving diabetes, despite persistent insulin deficiency. CONCLUSIONS/INTERPRETATION: Alpha cell exposure to hyperglycaemia enhances amino acid synthesis and transport, resulting in sustained activation of mTORC1, thereby increasing glucagon secretion. mTORC1 therefore plays a major role in mediating alpha cell dysfunction in diabetes. DATA AVAILABILITY: All sequencing data are available from the Gene Expression Omnibus (GEO) repository (accession no. GSE154126; https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE154126 ).


Subject(s)
Diabetes Mellitus, Experimental , Diabetes Mellitus, Type 2 , Hyperglycemia , Adult , Humans , Animals , Glucagon , Mechanistic Target of Rapamycin Complex 1 , Glucose , Mammals
7.
iScience ; 26(7): 107046, 2023 Jul 21.
Article in English | MEDLINE | ID: mdl-37389181

ABSTRACT

Weight loss interventions, including dietary changes, pharmacotherapy, or bariatric surgery, prevent many of the adverse consequences of obesity, and may also confer intervention-specific benefits beyond those seen with decreased weight alone. We compared the molecular effects of different interventions on liver metabolism to understand the mechanisms underlying these benefits. Male rats on a high-fat, high-sucrose diet underwent sleeve gastrectomy (SG) or intermittent fasting with caloric restriction (IF-CR), achieving equivalent weight loss. The interventions were compared to ad-libitum (AL)-fed controls. Analysis of liver and blood metabolome and transcriptome revealed distinct and sometimes contrasting metabolic effects between the two interventions. SG primarily influenced one-carbon metabolic pathways, whereas IF-CR increased de novo lipogenesis and glycogen storage. These findings suggest that the unique metabolic pathways affected by SG and IF-CR contribute to their distinct clinical benefits, with bariatric surgery potentially influencing long-lasting changes through its effect on one-carbon metabolism.

8.
Cell Rep Med ; 4(6): 101073, 2023 06 20.
Article in English | MEDLINE | ID: mdl-37290438

ABSTRACT

Cystic kidney disease is a leading cause of morbidity in patients with tuberous sclerosis complex (TSC). We characterize the misregulated metabolic pathways using cell lines, a TSC mouse model, and human kidney sections. Our study reveals a substantial perturbation in the arginine biosynthesis pathway in TSC models with overexpression of argininosuccinate synthetase 1 (ASS1). The rise in ASS1 expression is dependent on the mechanistic target of rapamycin complex 1 (mTORC1) activity. Arginine depletion prevents mTORC1 hyperactivation and cell cycle progression and averts cystogenic signaling overexpression of c-Myc and P65. Accordingly, an arginine-depleted diet substantially reduces the TSC cystic load in mice, indicating the potential therapeutic effects of arginine deprivation for the treatment of TSC-associated kidney disease.


Subject(s)
Tuberous Sclerosis , Humans , Mice , Animals , Tuberous Sclerosis Complex 2 Protein/metabolism , Tuberous Sclerosis/metabolism , Arginine/metabolism , Mechanistic Target of Rapamycin Complex 1 , Kidney/metabolism
9.
PLoS Genet ; 19(6): e1010812, 2023 06.
Article in English | MEDLINE | ID: mdl-37347785

ABSTRACT

Bacteria must often survive following the exhaustion of their external growth resources. Fitting with this need, many bacterial species that cannot sporulate, can enter a state known as long term stationary phase (LTSP) in which they can persist for years within spent media. Several recent studies have revealed the dynamics of genetic adaptation of Escherichia coli under LTSP. Yet, the metabolic consequences of such genetic adaptation were not addressed. Here, we characterized the metabolic changes LTSP populations experience, over the first 32 days under LTSP. This allowed us to link genetic adaptations observed in a convergent manner across LTSP populations back to their metabolic adaptive effect. Specifically, we demonstrate that through the acquisition of mutations combinations in specific sets of metabolic genes, E. coli acquires the ability to consume the short chain fatty acid butyrate. Intriguingly, this fatty acid is not initially present within the rich media we used in this study. Instead, it is E. coli itself that produces butyrate during its initial growth within fresh rich media. The mutations that enable butyrate consumption allow E. coli to grow on butyrate. However, the clones carrying these mutations rapidly decrease in frequency, once the butyrate is consumed, likely reflecting an associated cost to fitness. Yet despite this, E. coli populations show a remarkable capability of maintaining these genotypes at low frequency, as standing variation. This in turn allows them to more rapidly re-adapt to consume butyrate, once it again becomes available to them.


Subject(s)
Butyrates , Escherichia coli , Escherichia coli/metabolism , Butyrates/metabolism , Adaptation, Physiological/genetics , Acclimatization , Mutation , Bacteria
10.
JCI Insight ; 8(7)2023 04 10.
Article in English | MEDLINE | ID: mdl-36809274

ABSTRACT

Diabetes is associated with increased risk for kidney disease, heart failure, and mortality. Sodium-glucose cotransporter 2 inhibitors (SGLT2i) prevent these adverse outcomes; however, the mechanisms involved are not clear. We generated a roadmap of the metabolic alterations that occur in different organs in diabetes and in response to SGLT2i. In vivo metabolic labeling with 13C-glucose in normoglycemic and diabetic mice treated with or without dapagliflozin, followed by metabolomics and metabolic flux analyses, showed that, in diabetes, glycolysis and glucose oxidation are impaired in the kidney, liver, and heart. Treatment with dapagliflozin failed to rescue glycolysis. SGLT2 inhibition increased glucose oxidation in all organs; in the kidney, this was associated with modulation of the redox state. Diabetes was associated with altered methionine cycle metabolism, evident by decreased betaine and methionine levels, whereas treatment with SGLT2i increased hepatic betaine along with decreased homocysteine levels. mTORC1 activity was inhibited by SGLT2i along with stimulation of AMPK in both normoglycemic and diabetic animals, possibly explaining the protective effects against kidney, liver, and heart diseases. Collectively, our findings suggest that SGLT2i induces metabolic reprogramming orchestrated by AMPK-mTORC1 signaling with common and distinct effects in various tissues, with implications for diabetes and aging.


Subject(s)
Diabetes Mellitus, Experimental , Sodium-Glucose Transporter 2 Inhibitors , Animals , Mice , Sodium-Glucose Transporter 2 Inhibitors/pharmacology , Diabetes Mellitus, Experimental/drug therapy , Sodium-Glucose Transporter 2/metabolism , AMP-Activated Protein Kinases/metabolism , Betaine , Glucose , Sodium/metabolism , Methionine
11.
bioRxiv ; 2023 Jan 18.
Article in English | MEDLINE | ID: mdl-36711913

ABSTRACT

Non-alcoholic fatty liver disease (NAFLD) affects nearly one third of the population worldwide. Understanding metabolic pathways involved can provide insights into disease progression. Untargeted metabolomics of livers from mice with early-stage steatosis indicated a decrease in methylated metabolites suggesting altered one carbon metabolism. The levels of glycine, a central component of one carbon metabolism, were lower in steatotic mice, in line with clinical evidence. Isotope tracing studies demonstrated that increased synthesis of serine from glycine is the underlying cause for glycine limitation in fatty livers. Consequently, the low glycine availability in steatotic livers impaired glutathione (GSH) synthesis under oxidative stress induced by acetaminophen (APAP), enhancing hepatic toxicity. Glycine supplementation mitigated acute liver damage and overall toxicity caused by APAP in fatty livers by supporting de novo GSH synthesis. Thus, early metabolic changes in NAFLD that lead to glycine depletion sensitize mice to xenobiotic toxicity even at a reversible stage of NAFLD.

12.
Int J Mol Sci ; 23(17)2022 Aug 29.
Article in English | MEDLINE | ID: mdl-36077200

ABSTRACT

Duchenne muscular dystrophy (DMD) is caused by mutations in the dystrophin gene and dilated cardiomyopathy (DCM) is a major cause of morbidity and mortality in DMD patients. We tested the hypothesis that DCM is caused by metabolic impairments by employing induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) generated from four DMD patients; an adult male, an adult female, a 7-year-old (7y) male and a 13-year-old (13y) male, all compared to two healthy volunteers. To test the hypothesis, we measured the bioenergetics, metabolomics, electrophysiology, mitochondrial morphology and mitochondrial activity of CMs, using respirometry, LC-MS, patch clamp, electron microscopy (EM) and confocal microscopy methods. We found that: (1) adult DMD CMs exhibited impaired energy metabolism and abnormal mitochondrial structure and function. (2) The 7y CMs demonstrated arrhythmia-free spontaneous firing along with "healthy-like" metabolic status, normal mitochondrial morphology and activity. In contrast, the 13y CMs were mildly arrhythmogenic and showed adult DMD-like bioenergetics deficiencies. (3) In DMD adult CMs, mitochondrial activities were attenuated by 45-48%, whereas the 7y CM activity was similar to that of healthy CMs. (4) In DMD CMs, but not in 7y CMs, there was a 75% decrease in the mitochondrial ATP production rate compared to healthy iPSC-CMs. In summary, DMD iPSC-CMs exhibit bioenergetic and metabolic impairments that are associated with rhythm disturbances corresponding to the patient's phenotype, thereby constituting novel targets for alleviating cardiomyopathy in DMD patients.


Subject(s)
Cardiomyopathy, Dilated , Induced Pluripotent Stem Cells , Muscular Dystrophy, Duchenne , Cardiomyopathy, Dilated/metabolism , Cell Differentiation , Dystrophin/genetics , Energy Metabolism , Female , Humans , Male , Muscular Dystrophy, Duchenne/genetics , Myocytes, Cardiac/metabolism
13.
Cells ; 12(1)2022 12 26.
Article in English | MEDLINE | ID: mdl-36611887

ABSTRACT

Tubulopathy plays a central role in the pathophysiology of diabetic kidney disease (DKD). Under diabetic conditions, the kidney proximal tubule cells (KPTCs) are exposed to an extensive amount of nutrients, most notably glucose; these nutrients deteriorate KPTCs function and promote the development and progression of DKD. Recently, the facilitative glucose transporter 2 (GLUT2) in KPTCs has emerged as a central regulator in the pathogenesis of DKD. This has been demonstrated by identifying its specific role in enhancing glucose reabsorption and glucotoxicity, and by deciphering its effect in regulating the expression of the sodium-glucose transporter 2 (SGLT2) in KPTCs. Moreover, reduction/deletion of KPTC-GLUT2 has been recently found to ameliorate DKD, raising the plausible idea of considering it as a therapeutic target against DKD. However, the underlying molecular mechanisms by which GLUT2 exerts its deleterious effects in KPTCs remain vague. Herein, we review the current findings on the proximal tubule GLUT2 biology and function under physiologic conditions, and its involvement in the pathophysiology of DKD. Furthermore, we shed new light on its cellular regulation during diabetic conditions.


Subject(s)
Diabetic Nephropathies , Sodium-Glucose Transporter 2 Inhibitors , Humans , Kidney/metabolism , Kidney Tubules, Proximal/metabolism , Glucose/metabolism , Diabetic Nephropathies/metabolism , Sodium-Glucose Transporter 2 Inhibitors/therapeutic use
SELECTION OF CITATIONS
SEARCH DETAIL