Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 186
Filter
1.
Article in English | MEDLINE | ID: mdl-38725372

ABSTRACT

BACKGROUND: Autosomal-recessive mutations in SPEG (striated muscle preferentially expressed protein kinase) have been linked to centronuclear myopathy with or without dilated cardiomyopathy (CNM5). Loss of SPEG is associated with defective triad formation, abnormal excitation-contraction coupling, calcium mishandling and disruption of the focal adhesion complex in skeletal muscles. To elucidate the underlying molecular pathways, we have utilized multi-omics tools and analysis to obtain a comprehensive view of the complex biological processes and molecular functions. METHODS: Skeletal muscles from 2-month-old SPEG-deficient (Speg-CKO) and wild-type (WT) mice were used for RNA sequencing (n = 4 per genotype) to profile transcriptomics and mass spectrometry (n = 4 for WT; n = 3 for Speg-CKO mice) to profile proteomics and phosphoproteomics. In addition, interactomics was performed using the SPEG antibody on pooled muscle lysates (quadriceps, gastrocnemius and triceps) from WT and Speg-CKO mice. Based on the multi-omics results, we performed quantitative real-time PCR, co-immunoprecipitation and immunoblot to verify the findings. RESULTS: We identified that SPEG interacts with myospryn complex proteins CMYA5, FSD2 and RyR1, which are critical for triad formation, and that SPEG deficiency results in myospryn complex abnormalities (protein levels decreased to 22 ± 3% for CMYA5 [P < 0.05] and 18 ± 3% for FSD2 [P < 0.01]). Furthermore, SPEG phosphorylates RyR1 at S2902 (phosphorylation level decreased to 55 ± 15% at S2902 in Speg-CKO mice; P < 0.05), and its loss affects JPH2 phosphorylation at multiple sites (increased phosphorylation at T161 [1.90 ± 0.24-fold], S162 [1.61 ± 0.37-fold] and S165 [1.66 ± 0.13-fold]; decreased phosphorylation at S228 and S231 [39 ± 6%], S234 [50 ± 12%], S593 [48 ± 3%] and S613 [66 ± 10%]; P < 0.05 for S162 and P < 0.01 for other sites). On analysing the transcriptome, the most dysregulated pathways affected by SPEG deficiency included extracellular matrix-receptor interaction (P < 1e-15) and peroxisome proliferator-activated receptor signalling (P < 9e-14). CONCLUSIONS: We have elucidated the critical role of SPEG in the triad as it works closely with myospryn complex proteins (CMYA5, FSD2 and RyR1), it regulates phosphorylation levels of various residues in JPH2 and S2902 in RyR1, and its deficiency is associated with dysregulation of several pathways. The study identifies unique SPEG-interacting proteins and their phosphorylation functions and emphasizes the importance of using a multi-omics approach to comprehensively evaluate the molecular function of proteins involved in various genetic disorders.

2.
Article in English | MEDLINE | ID: mdl-38697357

ABSTRACT

BACKGROUND & AIMS: Humans with WNT2B deficiency have severe intestinal disease, including significant inflammatory injury, highlighting a critical role for WNT2B. We sought to understand how WNT2B contributes to intestinal homeostasis. METHODS: We investigated the intestinal health of Wnt2b knock out (KO) mice. We assessed the baseline histology and health of the small intestine and colon, and the impact of inflammatory challenge using dextran sodium sulfate (DSS). We also evaluated human intestinal tissue. RESULTS: Mice with WNT2B deficiency had normal baseline histology but enhanced susceptibility to DSS colitis because of an increased early injury response. Although intestinal stem cells markers were decreased, epithelial proliferation was similar to control subjects. Wnt2b KO mice showed an enhanced inflammatory signature after DSS treatment. Wnt2b KO colon and human WNT2B-deficient organoids had increased levels of CXCR4 and IL6, and biopsy tissue from humans showed increased neutrophils. CONCLUSIONS: WNT2B is important for regulation of inflammation in the intestine. Absence of WNT2B leads to increased expression of inflammatory cytokines and increased susceptibility to gastrointestinal inflammation, particularly in the colon.

3.
Am J Hum Genet ; 111(5): 863-876, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38565148

ABSTRACT

Copy number variants (CNVs) are significant contributors to the pathogenicity of rare genetic diseases and, with new innovative methods, can now reliably be identified from exome sequencing. Challenges still remain in accurate classification of CNV pathogenicity. CNV calling using GATK-gCNV was performed on exomes from a cohort of 6,633 families (15,759 individuals) with heterogeneous phenotypes and variable prior genetic testing collected at the Broad Institute Center for Mendelian Genomics of the Genomics Research to Elucidate the Genetics of Rare Diseases consortium and analyzed using the seqr platform. The addition of CNV detection to exome analysis identified causal CNVs for 171 families (2.6%). The estimated sizes of CNVs ranged from 293 bp to 80 Mb. The causal CNVs consisted of 140 deletions, 15 duplications, 3 suspected complex structural variants (SVs), 3 insertions, and 10 complex SVs, the latter two groups being identified by orthogonal confirmation methods. To classify CNV variant pathogenicity, we used the 2020 American College of Medical Genetics and Genomics/ClinGen CNV interpretation standards and developed additional criteria to evaluate allelic and functional data as well as variants on the X chromosome to further advance the framework. We interpreted 151 CNVs as likely pathogenic/pathogenic and 20 CNVs as high-interest variants of uncertain significance. Calling CNVs from existing exome data increases the diagnostic yield for individuals undiagnosed after standard testing approaches, providing a higher-resolution alternative to arrays at a fraction of the cost of genome sequencing. Our improvements to the classification approach advances the systematic framework to assess the pathogenicity of CNVs.


Subject(s)
DNA Copy Number Variations , Exome Sequencing , Exome , Rare Diseases , Humans , DNA Copy Number Variations/genetics , Rare Diseases/genetics , Rare Diseases/diagnosis , Exome/genetics , Male , Female , Cohort Studies , Genetic Testing/methods
4.
J Pharm Bioallied Sci ; 16(Suppl 1): S239-S242, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38595499

ABSTRACT

Aims: The purpose of this study was to comparatively evaluate the cutting efficiency of Pedoflex rotary, Kedo SH manual file, and manual K file systems used in root canal instrumentation while performing pulp therapy of deciduous teeth with a stereomicroscope. Materials and Methods: Forty-five extracted primary human root canals were chosen, and following the removal of pulp tissue, the canals were dyed with Indian ink and left to dry for 2 h. The samples were randomly divided into three groups, Group A: Kedo SH manual file system (n = 15), Group B: Pedoflex rotary file system (n = 15), and Group C: Manual K files (n = 15). After root canal instrumentation, all the root canals were cleared to make them transparent. The teeth after clearing were observed under stereomicroscope and scored according to the amount of dye present in the root canals. The data were tabulated and statistically analyzed with SPSS version 16 using Chi-square, Kruskal-Wallis, and Dunn's test (post-hoc). Results: With regards to cutting efficiency, there was a statistically noteworthy difference among groups A and C [P = 0.000] and groups B and C [P = 0.000]. Furthermore, groups A and B did not differ statistically significantly [P = 0.950]. Conclusions: Cutting efficacy of the Pedoflex rotary files was seen to be superior to that of Kedo SH and manual K files. Clinical Significance: Rotary files in deciduous teeth have various benefits over manual files, resulting in a noticeable reduction in working time, which has aided in maintaining patient participation by reducing the risk for fatigue. We conclude that NiTi rotary devices result in a superior cutting efficiency and, as a result, greater clinical success.

5.
J Perinatol ; 2024 Mar 18.
Article in English | MEDLINE | ID: mdl-38499751

ABSTRACT

OBJECTIVE: To evaluate patterns of genetic testing among infants with CHD at a tertiary care center. STUDY DESIGN: We conducted a retrospective observational cohort study of infants in the NICU with suspicion of a genetic disorder. 1075 of 7112 infants admitted to BCH had genetic evaluation including 329 with CHD and 746 without CHD. 284 of 525 infants with CHD admitted to CMHH had genetic evaluation. Patterns of testing and diagnoses were compared. RESULTS: The rate of diagnosis after testing was similar for infants with or without CHD (38% [121/318] vs. 36% [246/676], p = 0.14). In a multiple logistic regression, atrioventricular septal defects were most high associated with genetic diagnosis (odds ratio 29.99, 95% confidence interval 2.69-334.12, p < 0.001). CONCLUSIONS: Infants with suspicion of a genetic disorder with CHD had similar rates of molecular diagnosis as those without CHD. These results support a role for genetic testing among NICU infants with CHD.

6.
BMJ Open ; 14(2): e080529, 2024 Feb 06.
Article in English | MEDLINE | ID: mdl-38320840

ABSTRACT

INTRODUCTION: Rapid genomic sequencing (rGS) in critically ill infants with suspected genetic disorders has high diagnostic and clinical utility. However, rGS has primarily been available at large referral centres with the resources and expertise to offer state-of-the-art genomic care. Critically ill infants from racial and ethnic minority and/or low-income populations disproportionately receive care in safety-net and/or community settings lacking access to state-of-the-art genomic care, contributing to unacceptable health equity gaps. VIrtual GenOme CenteR is a 'proof-of-concept' implementation science study of an innovative delivery model for genomic care in safety-net neonatal intensive care units (NICUs). METHODS AND ANALYSIS: We developed a virtual genome centre at a referral centre to remotely support safety-net NICU sites predominantly serving racial and ethnic minority and/or low-income populations and have limited to no access to rGS. Neonatal providers at each site receive basic education about genomic medicine from the study team and identify eligible infants. The study team enrols eligible infants (goal n of 250) and their parents and follows families for 12 months. Enrolled infants receive rGS, the study team creates clinical interpretive reports to guide neonatal providers on interpreting results, and neonatal providers return results to families. Data is collected via (1) medical record abstraction, (2) surveys, interviews and focus groups with neonatal providers and (3) surveys and interviews with families. We aim to examine comprehensive implementation outcomes based on the Proctor Implementation Framework using a mixed methods approach. ETHICS AND DISSEMINATION: This study is approved by the institutional review board of Boston Children's Hospital (IRB-P00040496) and participating sites. Participating families are required to provide electronic written informed consent and neonatal provider consent is implied through the completion of surveys. The results will be disseminated via peer-reviewed publications and data will be made accessible per National Institutes of Health (NIH) policies. TRIAL REGISTRATION NUMBER: NCT05205356/clinicaltrials.gov.


Subject(s)
Ethnicity , Intensive Care Units, Neonatal , Infant, Newborn , Infant , Child , Humans , Critical Illness , Minority Groups , Genomics
7.
J Immunol ; 212(5): 904-916, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38276072

ABSTRACT

A primary concern in vaccine development is safety, particularly avoiding an excessive immune reaction in an otherwise healthy individual. An accurate prediction of vaccine reactogenicity using in vitro assays and computational models would facilitate screening and prioritization of novel candidates early in the vaccine development process. Using the modular in vitro immune construct model of human innate immunity, PBMCs from 40 healthy donors were treated with 10 different vaccines of varying reactogenicity profiles and then cell culture supernatants were analyzed via flow cytometry and a multichemokine/cytokine assay. Differential response profiles of innate activity and cell viability were observed in the system. In parallel, an extensive adverse event (AE) dataset for the vaccines was assembled from clinical trial data. A novel reactogenicity scoring framework accounting for the frequency and severity of local and systemic AEs was applied to the clinical data, and a machine learning approach was employed to predict the incidence of clinical AEs from the in vitro assay data. Biomarker analysis suggested that the relative levels of IL-1B, IL-6, IL-10, and CCL4 have higher predictive importance for AE risk. Predictive models were developed for local reactogenicity, systemic reactogenicity, and specific individual AEs. A forward-validation study was performed with a vaccine not used in model development, Trumenba (meningococcal group B vaccine). The clinically observed Trumenba local and systemic reactogenicity fell on the 26th and 93rd percentiles of the ranges predicted by the respective models. Models predicting specific AEs were less accurate. Our study presents a useful framework for the further development of vaccine reactogenicity predictive models.


Subject(s)
Vaccines , Humans , Immunity, Innate , Incidence , Vaccine Development
9.
Basic Res Cardiol ; 119(1): 151-168, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38145999

ABSTRACT

A deficiency of striated preferentially expressed gene (Speg), a member of the myosin light chain kinase family, results in abnormal myofibril structure and function of immature cardiomyocytes (CMs), corresponding with a dilated cardiomyopathy, heart failure and perinatal death. Mitochondrial development plays a role in cardiomyocyte maturation. Therefore, this study investigated whether Speg deficiency ( - / - ) in CMs would result in mitochondrial abnormalities. Speg wild-type and Speg-/- C57BL/6 littermate mice were utilized for assessment of mitochondrial structure by transmission electron and confocal microscopies. Speg was expressed in the first and second heart fields at embryonic (E) day 7.5, prior to the expression of mitochondrial Na+/Ca2+/Li+ exchanger (NCLX) at E8.5. Decreases in NCLX expression (E11.5) and the mitochondrial-to-nuclear DNA ratio (E13.5) were observed in Speg-/- hearts. Imaging of E18.5 Speg-/- hearts revealed abnormal mitochondrial cristae, corresponding with decreased ATP production in cells fed glucose or palmitate, increased levels of mitochondrial superoxide and depolarization of mitochondrial membrane potential. Interestingly, phosphorylated (p) PGC-1α, a key mediator of mitochondrial development, was significantly reduced in Speg-/- hearts during screening for targeted genes. Besides Z-line expression, Speg partially co-localized with PGC-1α in the sarcomeric region and was found in the same complex by co-immunoprecipitation. Overexpression of a Speg internal serine/threonine kinase domain in Speg-/- CMs promoted translocation of pPGC-1α into the nucleus, and restored ATP production that was abolished by siRNA-mediated silencing of PGC-1α. Our results demonstrate a critical role of Speg in mitochondrial development and energy metabolism in CMs, mediated in part by phosphorylation of PGC-1α.


Subject(s)
Cardiomyopathy, Dilated , Mitochondrial Diseases , Mice , Animals , Pregnancy , Female , Myocytes, Cardiac/metabolism , Mice, Inbred C57BL , Cardiomyopathy, Dilated/genetics , Cardiomyopathy, Dilated/metabolism , DNA, Mitochondrial/metabolism , Adenosine Triphosphate/metabolism , Mitochondrial Diseases/metabolism , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/metabolism , Muscle Proteins/genetics , Myosin-Light-Chain Kinase/genetics , Myosin-Light-Chain Kinase/metabolism
10.
Am J Med Genet A ; 194(5): e63509, 2024 May.
Article in English | MEDLINE | ID: mdl-38158391

ABSTRACT

Advances in bioinformatic tools paired with the ongoing accumulation of genetic knowledge and periodic reanalysis of genomic sequencing data have led to an improvement in genetic diagnostic rates. Candidate gene variants (CGVs) identified during sequencing or on reanalysis but not yet implicated in human disease or associated with a phenotypically distinct condition are often not revisited, leading to missed diagnostic opportunities. Here, we revisited 33 such CGVs from our previously published study and determined that 16 of them are indeed disease-causing (novel or phenotype expansion) since their identification. These results emphasize the need to focus on previously identified CGVs during sequencing or reanalysis and the importance of sharing that information with researchers around the world, including relevant functional analysis to establish disease causality.


Subject(s)
Computational Biology , Genomics , Humans , Exome Sequencing , Phenotype , Genomics/methods , Computational Biology/methods , Alleles
11.
Mol Genet Metab Rep ; 38: 101027, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38077956

ABSTRACT

FLNC gene encodes for Filamin-C (FLNC) protein, a sacromeric protein with important structural and signaling functions in the myocyte. Pathogenic dominant variants in FLNC were initially linked to myofibrillar myopathy and over time, evidence showed association of this gene with different forms of autosomal dominant cardiomyopathy including hypertrophic, dilated and restrictive forms. Recently, two cases of recessive FLNC mutations have been reported by Reinstein et al. and Kölbel et al., one with only cardiomyopathy and other with only myopathy. In this report, we describe a third case, a boy who was diagnosed at 10 years of age with shortness of breath and dilated cardiomyopathy who on sequencing was found to have a novel homozygous splice site variant (NM_001458.4 c.2122-1G>C) in FLNC. This case suggests that the phenotype associated with variants in FLNC is very heterogenous and can be inherited in dominant or recessive forms, with later being more severe and of earlier onset.

12.
Eur J Hum Genet ; 31(12): 1357-1363, 2023 12.
Article in English | MEDLINE | ID: mdl-37789085

ABSTRACT

During the neonatal period, many genetic disorders present and contribute to neonatal morbidity and mortality. Genomic medicine-the use of genomic information in clinical care- has the potential to significantly reduce morbidity and mortality in the neonatal period and improve outcomes for this population. Diagnostic genomic testing for symptomatic newborns, especially rapid testing, has been shown to be feasible and have diagnostic and clinical utility, particularly in the short-term. Ongoing studies are assessing the feasibility and utility, including personal utility, of implementation in diverse populations. Genomic screening for asymptomatic newborns has also been studied, and the acceptability and feasibility of such an approach remains an active area of investigation. Emerging precision therapies, with examples even at the "n-of-1" level, highlight the promise of precision diagnostics to lead to early intervention and improve outcomes. To sustainably implement genomic medicine in neonatal care in an ethical, effective, and equitable manner, we need to ensure access to genetics and genomics knowledge, access to genomic tests, which is currently limited by payors, feasible processes for ordering these tests, and access to follow up in the clinical and research realms. Future studies will provide further insight into enablers and barriers to optimize implementation strategies.


Subject(s)
Genomic Medicine , Precision Medicine , Infant, Newborn , Humans , Mass Screening , Genomics
13.
bioRxiv ; 2023 Oct 20.
Article in English | MEDLINE | ID: mdl-37905068

ABSTRACT

Inherited retinal diseases (IRDs) encompass a genetically diverse group of conditions in which mutations in genes critical to retinal function lead to progressive loss of photoreceptor cells and subsequent visual impairment. A handful of ribosome-associated genes have been implicated in retinal disorders alongside neurological phenotypes. This study focuses on the HBS1L gene, encoding HBS1 Like Translational GTPase which has been recognized as a critical ribosomal rescue factor. Previously, we have reported a female child carrying biallelic HBS1L mutations, manifesting growth restriction, developmental delay, and hypotonia. In this study, we describe her ophthalmologic findings, compare them with the Hbs1ltm1a/tm1a hypomorph mouse model, and evaluate the underlying microscopic and molecular perturbations. The patient was noted to have impaired visual function observed by electroretinogram (ERG), with dampened amplitudes of a- and b-waves in both rod- and cone-mediated responses. Hbs1ltm1a/tm1a mice exhibited profound retinal thinning of the entire retina, specifically of the outer retinal photoreceptor layer, detected using in vivo imaging of optical coherence tomography (OCT) and retinal cross sections. TUNEL assay revealed retinal degeneration due to extensive photoreceptor cell apoptosis. Loss of HBS1L resulted in comprehensive proteomic alterations in mass spectrometry analysis, with169 proteins increased and 480 proteins decreased including many critical IRD-related proteins. GO biological process and GSEA analyses reveal that these downregulated proteins are primarily involved in photoreceptor cell development, cilium assembly, phototransduction, and aerobic respiration. Furthermore, apart from the diminished level of PELO, a known partner protein, HBS1L depletion was accompanied by reduction in translation machinery associated 7 homolog (Tma7), and Endothelial differentiation-related factor 1(Edf1) proteins, the latter of which coordinates cellular responses to ribosome collisions. This novel connection between HBS1L and ribosome collision sensor (EDF1) further highlights the intricate mechanisms underpinning ribosomal rescue and quality control that are essential to maintain homeostasis of key proteins of retinal health, such as rhodopsin.

14.
medRxiv ; 2023 Oct 05.
Article in English | MEDLINE | ID: mdl-37873196

ABSTRACT

Copy number variants (CNVs) are significant contributors to the pathogenicity of rare genetic diseases and with new innovative methods can now reliably be identified from exome sequencing. Challenges still remain in accurate classification of CNV pathogenicity. CNV calling using GATK-gCNV was performed on exomes from a cohort of 6,633 families (15,759 individuals) with heterogeneous phenotypes and variable prior genetic testing collected at the Broad Institute Center for Mendelian Genomics of the GREGoR consortium. Each family's CNV data was analyzed using the seqr platform and candidate CNVs classified using the 2020 ACMG/ClinGen CNV interpretation standards. We developed additional evidence criteria to address situations not covered by the current standards. The addition of CNV calling to exome analysis identified causal CNVs for 173 families (2.6%). The estimated sizes of CNVs ranged from 293 bp to 80 Mb with estimates that 44% would not have been detected by standard chromosomal microarrays. The causal CNVs consisted of 141 deletions, 15 duplications, 4 suspected complex structural variants (SVs), 3 insertions and 10 complex SVs, the latter two groups being identified by orthogonal validation methods. We interpreted 153 CNVs as likely pathogenic/pathogenic and 20 CNVs as high interest variants of uncertain significance. Calling CNVs from existing exome data increases the diagnostic yield for individuals undiagnosed after standard testing approaches, providing a higher resolution alternative to arrays at a fraction of the cost of genome sequencing. Our improvements to the classification approach advances the systematic framework to assess the pathogenicity of CNVs.

15.
Health Serv Insights ; 16: 11786329231189407, 2023.
Article in English | MEDLINE | ID: mdl-37533503

ABSTRACT

Background: Pneumonia is one of the leading causes of death in under-5 children in India. This led the Ministry of Health & Family Welfare (MoHFW) in India to decide for the nationwide roll-out of the Pneumococcal Conjugate Vaccine (PCV). However, the introduction of PCV became more complex in the face of unprecedented challenges set forth by the COVID-19 pandemic. The study aims to assess enablers and barriers to the introduction of PCV in India during the pandemic. Methodology: Qualitative research approach involving key-informant interviews from John Snow India (JSI), the lead technical agency that supported MoHFW in the PCV expansion was employed to delineate the enablers and barriers. Principle of saturation was employed to derive the sample size. Thematic analysis using inductive approach was based on the modified World Health Organization (WHO) framework for new vaccine introduction impact on the Immunization and Health Systems, using NVIVO 12 qualitative data analysis software. Results: A total of 11 key informants (4 national-level program managers and 7 state technical officers) were telephonically interviewed. The study found social acceptance, lower cost of the vaccine, and intensive communication activities as potential enablers. Other enablers for PCV introduction included a robust vaccine supply-chain system, ample cold-chain space availability, and strong political commitment, despite the ongoing second wave. Further, the identified barriers included poor physical access, insufficient social mobilization, and limited advocacy along with a stretched workforce. Conclusion: The study delineated several enablers and barriers to introducing PCV in the country during the pandemic. The existing barriers in the PCV roll-out prompted the need to address these gaps, making key program-based recommendations to improve future new vaccine introductions during the pandemic.

16.
Hum Mol Genet ; 32(20): 2981-2995, 2023 Oct 04.
Article in English | MEDLINE | ID: mdl-37531237

ABSTRACT

Protein phosphatase 1 regulatory subunit 3F (PPP1R3F) is a member of the glycogen targeting subunits (GTSs), which belong to the large group of regulatory subunits of protein phosphatase 1 (PP1), a major eukaryotic serine/threonine protein phosphatase that regulates diverse cellular processes. Here, we describe the identification of hemizygous variants in PPP1R3F associated with a novel X-linked recessive neurodevelopmental disorder in 13 unrelated individuals. This disorder is characterized by developmental delay, mild intellectual disability, neurobehavioral issues such as autism spectrum disorder, seizures and other neurological findings including tone, gait and cerebellar abnormalities. PPP1R3F variants segregated with disease in affected hemizygous males that inherited the variants from their heterozygous carrier mothers. We show that PPP1R3F is predominantly expressed in brain astrocytes and localizes to the endoplasmic reticulum in cells. Glycogen content in PPP1R3F knockout astrocytoma cells appears to be more sensitive to fluxes in extracellular glucose levels than in wild-type cells, suggesting that PPP1R3F functions in maintaining steady brain glycogen levels under changing glucose conditions. We performed functional studies on nine of the identified variants and observed defects in PP1 binding, protein stability, subcellular localization and regulation of glycogen metabolism in most of them. Collectively, the genetic and molecular data indicate that deleterious variants in PPP1R3F are associated with a new X-linked disorder of glycogen metabolism, highlighting the critical role of GTSs in neurological development. This research expands our understanding of neurodevelopmental disorders and the role of PP1 in brain development and proper function.


Subject(s)
Autism Spectrum Disorder , Autistic Disorder , Intellectual Disability , Neurodevelopmental Disorders , Male , Humans , Intellectual Disability/genetics , Intellectual Disability/complications , Protein Phosphatase 1/genetics , Autism Spectrum Disorder/genetics , Autistic Disorder/genetics , Glucose , Glycogen , Neurodevelopmental Disorders/genetics , Neurodevelopmental Disorders/complications
17.
medRxiv ; 2023 Jun 16.
Article in English | MEDLINE | ID: mdl-37398376

ABSTRACT

Purpose: De novo variants in CUL3 (Cullin-3 ubiquitin ligase) have been strongly associated with neurodevelopmental disorders (NDDs), but no large case series have been reported so far. Here we aimed to collect sporadic cases carrying rare variants in CUL3, describe the genotype-phenotype correlation, and investigate the underlying pathogenic mechanism. Methods: Genetic data and detailed clinical records were collected via multi-center collaboration. Dysmorphic facial features were analyzed using GestaltMatcher. Variant effects on CUL3 protein stability were assessed using patient-derived T-cells. Results: We assembled a cohort of 35 individuals with heterozygous CUL3 variants presenting a syndromic NDD characterized by intellectual disability with or without autistic features. Of these, 33 have loss-of-function (LoF) and two have missense variants. CUL3 LoF variants in patients may affect protein stability leading to perturbations in protein homeostasis, as evidenced by decreased ubiquitin-protein conjugates in vitro . Specifically, we show that cyclin E1 (CCNE1) and 4E-BP1 (EIF4EBP1), two prominent substrates of CUL3, fail to be targeted for proteasomal degradation in patient-derived cells. Conclusion: Our study further refines the clinical and mutational spectrum of CUL3 -associated NDDs, expands the spectrum of cullin RING E3 ligase-associated neuropsychiatric disorders, and suggests haploinsufficiency via LoF variants is the predominant pathogenic mechanism.

18.
Vaccine ; 41(35): 5195-5200, 2023 08 07.
Article in English | MEDLINE | ID: mdl-37451874

ABSTRACT

BACKGROUND: Several randomized trials and real-world studies depicted the role of monoclonal antibody infusion in reducing hospitalization, and halting progression from asymptomatic to symptomatic COVID pneumonia, viral titer, and death. No data exists to show outcomes of patients who received casirivimab-imdevimab infusion based on their vaccination status and underlying comorbidities. This study aims to provide outcomes of casirivimab-imdevimab treatment during the SARS-CoV-2 B1.617.2 (Delta) surge among fully vaccinated and not fully vaccinated individuals. METHODS: COVID-19-positive patients who received casirivimab-imdevimab infusion during the Delta surge were analyzed to compare their underlying comorbidities and the rate of 28-days all-cause and COVID-related ED visits or hospitalization, among fully vaccinated and not fully vaccinated individuals. RESULTS: A total of 3,586 patients received casirivimab-imdevimab infusion. COVID-related hospitalizations were directly related to the number of comorbidities (OR:1.745, 95 % CI:1.469-2.074). Vaccinated patients with ≥3 comorbidities had lower rates of 28-day COVID-related ED visits or hospitalization (p = 0.044) and those with ≥4 comorbidities had lower rates of 28-day All-cause ED visits or hospitalization (p = 0.029). Hypertension (OR:2.418, 95 %CI:1.341-4.360), immunocompromised state (OR:5.250, 95 %CI: 1.912-14.417), age ≥ 65 (OR:4.045, 95 %CI:2.224-7.358) increased the probability of hospitalization due to COVID and being fully vaccinated lowered the likelihood of hospitalization (OR: 0.472, 95 %CI: 0.239-0.933). Vaccinated patients had a lower length of COVID-related hospitalization (2 days vs 4.5 days, p < 0.001). CONCLUSION: COVID vaccination status and comorbidities are significant predictors of outcomes after casirivimab-imdevimab treatment. Despite having higher comorbidities, patients who were fully vaccinated at the time of casirivimab-imdevimab infusion had a lower length of hospitalization and reduced 28-day COVID ED visits or hospitalizations. Future trials should also compare outcomes based on the patient's vaccination status.


Subject(s)
COVID-19 , Vaccines , Humans , Antibodies, Monoclonal/therapeutic use , COVID-19 Vaccines/therapeutic use , SARS-CoV-2 , COVID-19/epidemiology , COVID-19/prevention & control
19.
Cureus ; 15(6): e40255, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37440815

ABSTRACT

Background Osteoporotic vertebral compression fracture (OVCF) is a common problem in old age, which causes incapacitating pain and leads to significant disability, morbidity, and mortality. Percutaneous vertebroplasty (PVP), a minimally invasive procedure, results in immediate pain relief with decreased morbidity. The primary aim of this study was to evaluate the quality of life (QOL), as denoted by the Roland-Morris Disability Questionnaire (RMDQ) score. In contrast, the secondary aims were determining pain relief using the 11-point Numeric Pain Rating Scale (NPRS) and vertebral height restoration and wedge angle measurements after PVP. Methodology This prospective, longitudinal, interventional study on the efficacy of PVP was conducted among patients with low back pain due to osteoporotic vertebral collapse in a tertiary care institute. Patients with OVCF were managed by PVP and followed at one week, one month, three months, and six months for improvement in QOL by the RMDQ score and pain relief using the NPRS. The pre and post-vertebroplasty wedge angle and vertebral height (anterior, middle, and posterior columns) at one week and six months were also compared by pre and post-vertebroplasty lateral view skiagrams. Results A total of 24 patients were included in this study based on the inclusion and exclusion criteria. The demographic data were comparable. The RMDQ score showed a statistically significant difference in post-PVP at one week (p = 0.044), one month (p = 0.031), three months (p = 0.022), and six months (p = 0.018). There was a statistically significant difference in the NPRS at six months compared to the pre-PVP status, showing drastic pain relief in patients after PVP. The mean wedge angle (20.5 ± 2.07) measurement was reduced with a statistically significant increase in anterior body height restoration from pre-PVP to six months. There was no significant change in height at the middle and posterior columns compared to the pre-PVP height. Conclusions PVP is an effective, safe, minimally invasive pain and spine intervention for OVCFs with improved QOL and restoration of vertebral height.

20.
Am J Hum Genet ; 110(8): 1377-1393, 2023 08 03.
Article in English | MEDLINE | ID: mdl-37451268

ABSTRACT

Phosphoinositides (PIs) are membrane phospholipids produced through the local activity of PI kinases and phosphatases that selectively add or remove phosphate groups from the inositol head group. PIs control membrane composition and play key roles in many cellular processes including actin dynamics, endosomal trafficking, autophagy, and nuclear functions. Mutations in phosphatidylinositol 4,5 bisphosphate [PI(4,5)P2] phosphatases cause a broad spectrum of neurodevelopmental disorders such as Lowe and Joubert syndromes and congenital muscular dystrophy with cataracts and intellectual disability, which are thus associated with increased levels of PI(4,5)P2. Here, we describe a neurodevelopmental disorder associated with an increase in the production of PI(4,5)P2 and with PI-signaling dysfunction. We identified three de novo heterozygous missense variants in PIP5K1C, which encodes an isoform of the phosphatidylinositol 4-phosphate 5-kinase (PIP5KIγ), in nine unrelated children exhibiting intellectual disability, developmental delay, acquired microcephaly, seizures, visual abnormalities, and dysmorphic features. We provide evidence that the PIP5K1C variants result in an increase of the endosomal PI(4,5)P2 pool, giving rise to ectopic recruitment of filamentous actin at early endosomes (EEs) that in turn causes dysfunction in EE trafficking. In addition, we generated an in vivo zebrafish model that recapitulates the disorder we describe with developmental defects affecting the forebrain, including the eyes, as well as craniofacial abnormalities, further demonstrating the pathogenic effect of the PIP5K1C variants.


Subject(s)
Intellectual Disability , Phosphatidylinositols , Animals , Syndrome , Actins , Zebrafish/genetics , Intellectual Disability/genetics , Phosphoric Monoester Hydrolases/genetics , Phosphatidylinositol Phosphates
SELECTION OF CITATIONS
SEARCH DETAIL
...