Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 85
Filter
1.
Cardiovasc Pathol ; 71: 107640, 2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38604505

ABSTRACT

Exertional dyspnea has been documented in US military personnel after deployment to Iraq and Afghanistan. We studied whether continued exertional dyspnea in this patient population is associated with pulmonary vascular disease (PVD). We performed detailed histomorphometry of pulmonary vasculature in 52 Veterans with biopsy-proven post-deployment respiratory syndrome (PDRS) and then recruited five of these same Veterans with continued exertional dyspnea to undergo a follow-up clinical evaluation, including symptom questionnaire, pulmonary function testing, surface echocardiography, and right heart catheterization (RHC). Morphometric evaluation of pulmonary arteries showed significantly increased intima and media thicknesses, along with collagen deposition (fibrosis), in Veterans with PDRS compared to non-diseased (ND) controls. In addition, pulmonary veins in PDRS showed increased intima and adventitia thicknesses with prominent collagen deposition compared to controls. Of the five Veterans involved in our clinical follow-up study, three had borderline or overt right ventricle (RV) enlargement by echocardiography and evidence of pulmonary hypertension (PH) on RHC. Together, our studies suggest that PVD with predominant venular fibrosis is common in PDRS and development of PH may explain exertional dyspnea and exercise limitation in some Veterans with PDRS.

2.
Indian J Community Med ; 49(2): 349-353, 2024.
Article in English | MEDLINE | ID: mdl-38665469

ABSTRACT

Background: Agrawal and Shah modified CAST (Caries Assessment Spectrum and Treatment) is the novel index prepared specifically for the Indian population for the complete evaluation of the spectrum/range of dental caries described hierarchically. Objective: To assess the prevalence of dental caries and treatment needs in an adult Indian population using Agrawal and Shah modified CAST index. Materials and Methods: A cross-sectional transverse study was performed on 2000 adult patients in the age range of 19-70 years. All the adult patients were scored for caries presence by Agrawal and Shah modified CAST codes on a structured proforma. SPSS version 20 was used to analyze the data. Results: The prevalence of dental caries calculated using Agrawal and Shah modified CAST index was 85.6%. 5.2% (104) adults had sound dentition, 4.1% (82) adults had restorations, 2.1% (42) adults had non-cavitated lesions, 13.7% (274) adults had the presence of caries in the enamel, 19% (380) adults had the presence of caries in dentine, and pulpal involvement was observed in 27.7% (554) adults. 10.3% (206) adults had presented with a root surface and cervical caries. 13.6% (272) adults had lost at least one tooth due to caries, and 3% (60) adults had lost teeth due to any other reason except dental caries. 1.3% (26) adult patients do not show any caries-related diagnosis but were having predisposing conditions. Conclusion: Agrawal and Shah modified CAST index proved to be simple, useful, and appropriate in assessing dental caries prevalence in the Indian population along with the treatment needs of the Indian population.

3.
J Am Heart Assoc ; 13(7): e031796, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38533961

ABSTRACT

BACKGROUND: Phosphodiesterases degrade cyclic GMP (cGMP), the second messenger that mediates the cardioprotective effects of natriuretic peptides. High natriuretic peptide/cGMP ratio may reflect, in part, phosphodiesterase activity. Correlates of natriuretic peptide/cGMP in patients with heart failure with preserved ejection fraction are not well understood. Among patients with heart failure with preserved ejection fraction in the RELAX (Phosphodiesterase-5 Inhibition to Improve Clinical Status and Exercise Capacity in Heart Failure With Preserved Ejection Fraction) trial, we examined (1) cross-sectional correlates of circulating NT-proBNP (N-terminal pro-B-type natriuretic peptide)/cGMP ratio, (2) whether selective phosphodiesterase-5 inhibition by sildenafil changed the ratio, and (3) whether the effect of sildenafil on 24-week outcomes varied by baseline ratio. METHODS AND RESULTS: In 212 subjects, NT-proBNP/cGMP ratio was calculated at randomization and 24 weeks. Correlates of the ratio and its change were examined in multivariable proportional odds models. Whether baseline ratio modified the sildenafil effect on outcomes was examined by interaction terms. Higher NT-proBNP/cGMP ratio was associated with greater left ventricular mass and troponin, the presence of atrial fibrillation, and lower estimated glomerular filtration rate and peak oxygen consumption. Compared with placebo, sildenafil did not alter the ratio from baseline to 24 weeks (P=0.17). The effect of sildenafil on 24-week change in peak oxygen consumption, left ventricular mass, or clinical composite outcome was not modified by baseline NT-proBNP/cGMP ratio (P-interaction >0.30 for all). CONCLUSIONS: Among patients with heart failure with preserved ejection fraction, higher NT-proBNP/cGMP ratio associated with an adverse cardiorenal phenotype, which was not improved by selective phosphodiesterase-5 inhibition. Other phosphodiesterases may be greater contributors than phosphodiesterase-5 to the adverse phenotype associated with a high natriuretic peptide/cGMP ratio in HFpEF. REGISTRATION INFORMATION: clinicaltrials.gov. Identifier: NCT00763867.


Subject(s)
Heart Failure , Natriuretic Peptide, Brain , Humans , Biomarkers , Cross-Sectional Studies , Cyclic GMP , Cyclic Nucleotide Phosphodiesterases, Type 5 , Heart Failure/diagnosis , Heart Failure/drug therapy , Peptide Fragments , Sildenafil Citrate/pharmacology , Stroke Volume/physiology
4.
Cardiovasc Res ; 2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38377486

ABSTRACT

AIMS: The lymphocyte adaptor protein (LNK) is a negative regulator of cytokine and growth factor signaling. The rs3184504 variant in SH2B3 reduces LNK function and is linked to cardiovascular, inflammatory, and hematologic disorders including stroke. In mice, deletion of Lnk causes inflammation and oxidative stress. We hypothesized that Lnk-/- mice are susceptible to atrial fibrillation (AF) and that rs3184504 is associated with AF and AF-related stroke in humans. During inflammation, reactive lipid dicarbonyls are a major component of oxidative injury, and we further hypothesized that these mediators are critical drivers of the AF substrate in Lnk-/- mice. METHODS AND RESULTS: Lnk-/- or wild-type (WT) mice were treated with vehicle or 2-hydroxybenzylamine (2-HOBA), a dicarbonyl scavenger, for 3 months. Compared to WT, Lnk-/- mice displayed increased AF duration that was prevented by 2-HOBA. In the Lnk-/- atria, action potentials were prolonged with reduced transient outward K+ current, increased late Na+ current, and reduced peak Na+ current, proarrhythmic effects that were inhibited by 2-HOBA. Mitochondrial dysfunction, especially for complex I, was evident in Lnk-/- atria, while scavenging lipid dicarbonyls prevented this abnormality. Tumor necrosis factor-α (TNF-α) and interleukin-1ß (IL-1ß) were elevated in Lnk-/- plasma and atrial tissue, respectively, both of which caused electrical and bioenergetic remodeling in vitro. Inhibition of soluble TNF-α prevented electrical remodeling and AF susceptibility, while IL-1ß inhibition improved mitochondrial respiration but had no effect on AF susceptibility. In a large database of genotyped patients, rs3184504 was associated with AF, as well as AF-related stroke. CONCLUSIONS: These findings identify a novel role for LNK in the pathophysiology of AF in both experimental mice and in humans. Moreover, reactive lipid dicarbonyls are critical to the inflammatory AF substrate in Lnk-/- mice and mediate the proarrhythmic effects of pro-inflammatory cytokines, primarily through electrical remodeling.

5.
Circ Heart Fail ; 17(1): e010557, 2024 01.
Article in English | MEDLINE | ID: mdl-38126226

ABSTRACT

BACKGROUND: Greater left atrial size is associated with a higher incidence of cardiovascular disease and mortality, but the full spectrum of diagnoses associated with left atrial enlargement in sex-stratified clinical populations is not well known. Our study sought to identify genetic risk mechanisms affecting left atrial diameter (LAD) in a clinical cohort. METHODS: Using Vanderbilt deidentified electronic health record, we studied 6163 females and 5993 males of European ancestry who had at least 1 LAD measure and available genotyping. A sex-stratified polygenic score was constructed for LAD variation and tested for association against 1680 International Classification of Diseases code-based phenotypes. Two-sample univariable and multivariable Mendelian randomization approaches were used to assess etiologic relationships between candidate associations and LAD. RESULTS: A phenome-wide association study identified 25 International Classification of Diseases code-based diagnoses in females and 11 in males associated with a polygenic score of LAD (false discovery rate q<0.01), 5 of which were further evaluated by Mendelian randomization (waist circumference [WC], atrial fibrillation, heart failure, systolic blood pressure, and coronary artery disease). Sex-stratified differences in the genetic associations between risk factors and a polygenic score for LAD were observed (WC for females; heart failure, systolic blood pressure, atrial fibrillation, and WC for males). By multivariable Mendelian randomization, higher WC remained significantly associated with larger LAD in females, whereas coronary artery disease, WC, and atrial fibrillation remained significantly associated with larger LAD in males. CONCLUSIONS: In a clinical population, we identified, by genomic approaches, potential etiologic risk factors for larger LAD. Further studies are needed to confirm the extent to which these risk factors may be modified to prevent or reverse adverse left atrial remodeling and the extent to which sex modifies these risk factors.


Subject(s)
Atrial Fibrillation , Coronary Artery Disease , Heart Failure, Systolic , Female , Humans , Male , Atrial Fibrillation/diagnosis , Atrial Fibrillation/genetics , Atrial Fibrillation/complications , Genomics , Heart Atria/diagnostic imaging , Risk Factors , Mendelian Randomization Analysis
6.
Circ Res ; 133(11): 885-898, 2023 11 10.
Article in English | MEDLINE | ID: mdl-37929582

ABSTRACT

BACKGROUND: Pulmonary hypertension (PH) in heart failure with preserved ejection fraction (HFpEF) is a common and highly morbid syndrome, but mechanisms driving PH-HFpEF are poorly understood. We sought to determine whether a well-accepted murine model of HFpEF also displays features of PH, and we sought to identify pathways that might drive early remodeling of the pulmonary vasculature in HFpEF. METHODS: Eight-week-old male and female C57BL/6J mice received either Nγ-nitro-L-arginine methyl ester and high-fat diet or control water and diet for 2, 5, and 12 weeks. The db/db mice were studied as a second model of HFpEF. Early pathways regulating PH were identified by bulk and single-cell RNA sequencing. Findings were confirmed by immunostain in lungs of mice or lung slides from clinically performed autopsies of patients with PH-HFpEF. ELISA was used to verify IL-1ß (interleukin-1 beta) in mouse lung, mouse plasma, and also human plasma from patients with PH-HFpEF obtained at the time of right heart catheterization. Clodronate liposomes and an anti-IL-1ß antibody were utilized to deplete macrophages and IL-1ß, respectively, to assess their impact on pulmonary vascular remodeling in HFpEF in mouse models. RESULTS: Nγ-nitro-L-arginine methyl ester/high-fat diet-treated mice developed PH, small vessel muscularization, and right heart dysfunction. Inflammation-related gene ontologies were overrepresented in bulk RNA sequencing analysis of whole lungs, with an increase in CD68+ cells in both murine and human PH-HFpEF lungs. Cytokine profiling showed an increase in IL-1ß in mouse and human plasma. Finally, clodronate liposome treatment in mice prevented PH in Nγ-nitro-L-arginine methyl ester/high-fat diet-treated mice, and IL-1ß depletion also attenuated PH in Nγ-nitro-L-arginine methyl ester/high-fat diet-treated mice. CONCLUSIONS: We report a novel model for the study of PH and right heart remodeling in HFpEF, and we identify myeloid cell-derived IL-1ß as an important contributor to PH in HFpEF.


Subject(s)
Heart Failure , Hypertension, Pulmonary , Animals , Female , Humans , Male , Mice , Clodronic Acid , Heart Failure/metabolism , Hypertension, Pulmonary/etiology , Interleukin-1beta , Mice, Inbred C57BL , Myeloid Cells/metabolism , Stroke Volume/physiology
7.
Front Med (Lausanne) ; 10: 1276422, 2023.
Article in English | MEDLINE | ID: mdl-37869164

ABSTRACT

Introduction: Pulmonary arterial hypertension is a fatal cardiopulmonary disease. Leptin, a neuroendocrine hormone released by adipose tissue, has a complex relationship with cardiovascular diseases, including PAH. Leptin is thought to be an important factor linking metabolic syndrome and cardiovascular disorders. Given the published association between metabolic syndrome and RV dysfunction in PAH, we sought to determine the association between leptin and RV dysfunction. We hypothesized that in PAH-RV, leptin influences metabolic changes via leptin receptors, which can be manipulated by metformin. Methods: Plasma leptin was measured in PAH patients and healthy controls from a published trial of metformin in PAH. Leptin receptor localization was detected in RV from PAH patients, healthy controls, animal models of PH with RV dysfunction before and after metformin treatment, and cultured cardiomyocytes with two different BMPR2 mutants by performing immunohistochemical and cell fractionation studies. Functional studies were conducted in cultured cardiomyocytes to examine the role of leptin and metformin in lipid-driven mitochondrial respiration. Results: In human studies, we found that plasma leptin levels were higher in PAH patients and moderately correlated with higher BMI, but not in healthy controls. Circulating leptin levels were reduced by metformin treatment, and these findings were confirmed in an animal model of RV dysfunction. Leptin receptor expression was increased in PAH-RV cardiomyocytes. In animal models of RV dysfunction and cultured cardiomyocytes with BMPR2 mutation, we found increased expression and membrane localization of the leptin receptor. In cultured cardiomyocytes with BMPR2 mutation, leptin moderately influences palmitate uptake, possibly via CD36, in a mutation-specific manner. Furthermore, in cultured cardiomyocytes, the Seahorse XFe96 Extracellular Flux Analyzer and gene expression data indicate that leptin may not directly influence lipid-driven mitochondrial respiration in BMPR2 mutant cardiomyocytes. However, metformin alone or when supplemented with leptin can improve lipid-driven mitochondrial respiration in BMPR2 mutant cardiomyocytes. The effect of metformin on lipid-driven mitochondrial respiration in cardiomyocytes is BMPR2 mutation-specific. Conclusion: In PAH, increased circulating leptin can influence metabolic signaling in RV cardiomyocytes via the leptin receptor; in particular, it may alter lipid-dependent RV metabolism in combination with metformin in a mutation-specific manner and warrants further investigation.

8.
J Am Heart Assoc ; 12(15): e029190, 2023 08.
Article in English | MEDLINE | ID: mdl-37522172

ABSTRACT

Background Epidemiologic studies have identified risk factors associated with pulmonary hypertension and right heart failure, but causative drivers of pulmonary hypertension and right heart adaptation are not well known. We sought to leverage unbiased genetic approaches to determine clinical conditions that share genetic architecture with pulmonary pressure and right ventricular dysfunction. Methods and Results We leveraged Vanderbilt University's deidentified electronic health records and DNA biobank to identify 14 861 subjects of European ancestry who underwent at least 1 echocardiogram with available estimates of pulmonary pressure and right ventricular function. Analyses of the study were performed between 2020 and 2022. The final analytical sample included 14 861 participants (mean [SD] age, 63 [15] years and mean [SD] body mass index, 29 [7] kg/m2). An unbiased phenome-wide association study identified diabetes as the most statistically significant clinical International Classifications of Diseases, Ninth Revision (ICD-9) code associated with polygenic risk for increased pulmonary pressure. We validated this finding further by finding significant associations between genetic risk for diabetes and a related condition, obesity, with pulmonary pressure estimate. We then used 2-sample univariable Mendelian randomization and multivariable Mendelian randomization to show that diabetes, but not obesity, was independently associated with genetic risk for increased pulmonary pressure and decreased right ventricle load stress. Conclusions Our findings show that genetic risk for diabetes is the only significant independent causative driver of genetic risk for increased pulmonary pressure and decreased right ventricle load stress. These findings suggest that therapies targeting genetic risk for diabetes may also potentially be beneficial in treating pulmonary hypertension and right heart dysfunction.


Subject(s)
Diabetes Mellitus, Type 2 , Hypertension, Pulmonary , Humans , Middle Aged , Genome-Wide Association Study/methods , Heart Ventricles , Hypertension, Pulmonary/diagnosis , Hypertension, Pulmonary/epidemiology , Hypertension, Pulmonary/genetics , Obesity/diagnosis , Obesity/epidemiology , Obesity/genetics , Risk Factors , Aged
9.
bioRxiv ; 2023 May 18.
Article in English | MEDLINE | ID: mdl-37292652

ABSTRACT

Background: Pulmonary hypertension (PH) in heart failure with preserved ejection fraction (HFpEF) is a common and highly morbid syndrome, but mechanisms driving PH-HFpEF are not well understood. We sought to determine whether a well-accepted murine model of HFpEF also displays features of PH in HFpEF, and we sought to identify pathways that might drive early remodeling of the pulmonary vasculature in HFpEF. Methods: Eight week old male and female C57/BL6J mice were given either L-NAME and high fat diet (HFD) or control water/diet for 2,5, and 12 weeks. Bulk RNA sequencing and single cell RNA sequencing was performed to identify early and cell-specific pathways that might regulate pulmonary vascular remodeling in PH-HFpEF. Finally, clodronate liposome and IL1ß antibody treatments were utilized to deplete macrophages or IL1ß, respectively, to assess their impact on pulmonary vascular remodeling in HFpEF. Results: Mice given L-NAME/HFD developed PH, small vessel muscularization, and right heart dysfunction after 2 weeks of treatment. Inflammation-related gene ontologies were over-represented in bulk RNA sequencing analysis of whole lungs, with an increase in CD68+ cells in both murine and human PH-HFpEF lungs. Cytokine profiling of mouse lung and plasma showed an increase in IL1ß, which was confirmed in plasma from patients with HFpEF. Single cell sequencing of mouse lungs also showed an increase in M1-like, pro-inflammatory populations of Ccr2+ monocytes and macrophages, and transcript expression of IL1ß was primarily restricted to myeloid-type cells. Finally, clodronate liposome treatment prevented the development of PH in L-NAME/HFD treated mice, and IL1ß antibody treatment also attenuated PH in L-NAME/HFD treated mice. Conclusions: Our study demonstrated that a well-accepted model of HFpEF recapitulates features of pulmonary vascular remodeling commonly seen in patients with HFpEF, and we identified myeloid cell derived IL1ß as an important contributor to PH in HFpEF.

10.
Cardiovasc Res ; 119(13): 2312-2328, 2023 10 24.
Article in English | MEDLINE | ID: mdl-37314125

ABSTRACT

AIMS: Heart failure with preserved ejection fraction (HFpEF) is characterized by diastolic dysfunction, microvascular dysfunction, and myocardial fibrosis with recent evidence implicating the immune system in orchestrating cardiac remodelling. METHODS AND RESULTS: Here, we show the mouse model of deoxycorticosterone acetate (DOCA)-salt hypertension induces key elements of HFpEF, including diastolic dysfunction, exercise intolerance, and pulmonary congestion in the setting of preserved ejection fraction. A modified single-cell sequencing approach, cellular indexing of transcriptomes and epitopes by sequencing, of cardiac immune cells reveals an altered abundance and transcriptional signature in multiple cell types, most notably cardiac macrophages. The DOCA-salt model results in differential expression of several known and novel genes in cardiac macrophages, including up-regulation of Trem2, which has been recently implicated in obesity and atherosclerosis. The role of Trem2 in hypertensive heart failure, however, is unknown. We found that mice with genetic deletion of Trem2 exhibit increased cardiac hypertrophy, diastolic dysfunction, renal injury, and decreased cardiac capillary density after DOCA-salt treatment compared to wild-type controls. Moreover, Trem2-deficient macrophages have impaired expression of pro-angiogenic gene programmes and increased expression of pro-inflammatory cytokines. Furthermore, we found that plasma levels of soluble TREM2 are elevated in DOCA-salt treated mice and humans with heart failure. CONCLUSIONS: Together, our data provide an atlas of immunological alterations that can lead to improved diagnostic and therapeutic strategies for HFpEF. We provide our dataset in an easy to explore and freely accessible web application making it a useful resource for the community. Finally, our results suggest a novel cardioprotective role for Trem2 in hypertensive heart failure.


Subject(s)
Cardiomyopathies , Desoxycorticosterone Acetate , Heart Failure , Hypertension , Humans , Mice , Animals , Stroke Volume/physiology , Hypertension/chemically induced , Hypertension/genetics , Hypertension/metabolism , Myeloid Cells/metabolism , Leukocytes/metabolism , Membrane Glycoproteins/genetics , Receptors, Immunologic/genetics
11.
Rheum Dis Clin North Am ; 49(2): 483-488, 2023 05.
Article in English | MEDLINE | ID: mdl-37028848

ABSTRACT

Primary cardiac involvement in systemic sclerosis (SSc) is an important cause of morbidity and mortality. Abnormalities of cardiac structure and function can be detected on routine cardiopulmonary screening that is the standard of care for SSc monitoring. Cardiovascular magnetic resonance-extracellular volume (indicating diffuse fibrosis) and cardiac biomarkers may identify at-risk patients who would benefit from further evaluation including screening for atrial and ventricular arrhythmias with implantable loop recorders. The role of algorithm-based cardiac evaluation both before and after therapeutic initiation is one of the many unmet needs for SSc clinical care.


Subject(s)
Scleroderma, Systemic , Humans , Scleroderma, Systemic/complications , Scleroderma, Systemic/diagnosis , Fibrosis , Magnetic Resonance Imaging
14.
Pulm Circ ; 12(3): e12107, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35911183

ABSTRACT

Pulmonary arterial hypertension (PAH) is a fatal vasculopathy that ultimately leads to elevated pulmonary pressure and death by right ventricular (RV) failure, which occurs in part due to decreased fatty acid oxidation and cytotoxic lipid accumulation. In this study, we tested the hypothesis that decreased fatty acid oxidation and increased lipid accumulation in the failing RV is driven, in part, by a relative carnitine deficiency. We then tested whether supplementation of l-carnitine can reverse lipotoxic RV failure through augmentation of fatty acid oxidation. In vivo in transgenic mice harboring a human BMPR2 mutation, l-carnitine supplementation reversed RV failure by increasing RV cardiac output, improving RV ejection fraction, and decreasing RV lipid accumulation through increased PPARγ expression and augmented fatty acid oxidation of long chain fatty acids. These findings were confirmed in a second model of pulmonary artery banding-induced RV dysfunction. In vitro, l-carnitine supplementation selectively increased fatty acid oxidation in mitochondria and decreased lipid accumulation through a Cpt1-dependent pathway. l-Carnitine supplementation improves right ventricular contractility in the stressed RV through augmentation of fatty acid oxidation and decreases lipid accumulation. Correction of carnitine deficiency through l-carnitine supplementation in PAH may reverse RV failure.

15.
Nutr Clin Pract ; 37(6): 1316-1325, 2022 Dec.
Article in English | MEDLINE | ID: mdl-35932259

ABSTRACT

BACKGROUND: Malnutrition and low body mass index (BMI) are risk factors for mortality in hospitalized patients. Data substantiating this are unavailable for hospitalized general medical patients in our setting. We studied the prevalence of malnutrition among patients admitted to general medical wards in a tertiary care hospital and its role as a risk factor for 1-month mortality. We also investigated the association of BMI with mortality. METHODS: In this prospective observational study, nutrition assessment using Subjective Global Assessment (SGA) and anthropometric measurements was performed in 395 hospitalized general medical patients. Charlson Comorbidity Index (CCI) and Modified Early Warning System (MEWS) score were calculated. Clinical course and vital status at 1 month after discharge was noted. Factors associated with mortality were identified using logistic regression. RESULTS: The mean age of the study population was 46.2 + 16.1 years; 247 (62.5%) were males. Of 395 patients, 129 (32.7%) belonged to SGA A, 155 (39.2%) to SGA B, and 111 (28.1%) to SGA C. Mean (±SD) BMI was 23.38 (±5.33); 141 (35.6%) were obese. Mortality was observed in 61 (15.4%) patients. Patients in the lowest BMI quartile had the lowest mortality. The adjusted regression analysis showed that higher age and MEWS scores were independently associated with mortality. Severe malnourishment (SGA C) was another important predictor. Further, the odds of death increased consistently across the consecutive BMI quartiles. CONCLUSION: Higher age, higher MEWS scores, severe malnourishment, and higher BMI scores were independent risk factors for 1-month mortality in hospitalized general medical patients.


Subject(s)
Malnutrition , Protein-Energy Malnutrition , Male , Humans , Adult , Middle Aged , Female , Nutritional Status , Body Mass Index , Nutrition Assessment , Malnutrition/epidemiology , Hospitalization , Weight Loss
16.
BMJ Case Rep ; 15(8)2022 Aug 23.
Article in English | MEDLINE | ID: mdl-35999017

ABSTRACT

Spinal epidural abscess (SEA) is a surgical emergency if it causes paraplegia. Staphylococcus aureus and streptococci are the most common causes. Streptococcus gallolyticus has been reported to cause SEA only on three occasions earlier-all were associated with endocarditis or colonic malignancy. We report an older woman with diabetic ketoacidosis who presented with poorly localised back pain, fever and altered sensorium. Her lumbar puncture revealed frank pus, and MRI showed an SEA. She could not be weaned from mechanical ventilation post-surgical decompression, and she succumbed to ventilator-associated pneumonia. A triad of fever, back pain and neurological deficit should lead one to consider intraspinal suppuration. This report is the first S. gallolyticus-related SEA from India and the first in literature that was not associated with either endocarditis or colonic malignancy.


Subject(s)
Colonic Neoplasms , Endocarditis , Epidural Abscess , Aged , Back Pain/complications , Colonic Neoplasms/complications , Endocarditis/complications , Epidural Abscess/complications , Epidural Abscess/diagnostic imaging , Female , Humans , Streptococcus gallolyticus
17.
Circulation ; 146(7): e73-e88, 2022 08 16.
Article in English | MEDLINE | ID: mdl-35862198

ABSTRACT

This science advisory focuses on the need to better understand the epidemiology, pathophysiology, and treatment of pulmonary hypertension in patients with heart failure with preserved ejection fraction. This clinical phenotype is important because it is common, is strongly associated with adverse outcomes, and lacks evidence-based therapies. Our goal is to clarify key knowledge gaps in pulmonary hypertension attributable to heart failure with preserved ejection fraction and to suggest specific, actionable scientific directions for addressing such gaps. Areas in need of additional investigation include refined disease definitions and interpretation of hemodynamics, as well as greater insights into noncardiac contributors to pulmonary hypertension risk, optimized animal models, and further molecular studies in patients with combined precapillary and postcapillary pulmonary hypertension. We highlight translational approaches that may provide important biological insight into pathophysiology and reveal new therapeutic targets. Last, we discuss the current and future landscape of potential therapies for patients with heart failure with preserved ejection fraction and pulmonary vascular dysfunction, including considerations of precision medicine, novel trial design, and device-based therapies, among other considerations. This science advisory provides a synthesis of important knowledge gaps, culminating in a collection of specific research priorities that we argue warrant investment from the scientific community.


Subject(s)
Heart Failure , Hypertension, Pulmonary , American Heart Association , Animals , Hypertension, Pulmonary/drug therapy , Hypertension, Pulmonary/therapy , Stroke Volume/physiology , Ventricular Function, Left
18.
J Am Heart Assoc ; 11(11): e025578, 2022 06 07.
Article in English | MEDLINE | ID: mdl-35656995

ABSTRACT

Background Early (grade 1) cardiac left ventricular diastolic dysfunction (G1DD) increases the risk for heart failure with preserved ejection fraction and may improve with aggressive risk factor modification. Type 2 diabetes, obesity, hypertension, and coronary heart disease are associated with increased incidence of diastolic dysfunction. The genetic drivers of G1DD are not defined. Methods and Results We curated genotyped European ancestry G1DD cases (n=668) and controls with normal diastolic function (n=1772) from Vanderbilt's biobank. G1DD status was explored through (1) an additive model genome-wide association study, (2) shared polygenic risk through logistic regression, and (3) instrumental variable analysis using 2-sample Mendelian randomization (the inverse-variance weighted method, Mendelian randomization-Egger, and median) to determine potential modifiable risk factors. There were no common single nucleotide polymorphisms significantly associated with G1DD status. A polygenic risk score for BMI was significantly associated with increased G1DD risk (odds ratio [OR], 1.20 for 1-SD increase in BMI [95% CI, 1.08-1.32]; P=0.0003). The association was confirmed by the inverse-variance weighted method (OR, 1.89 [95% CI, 1.37-2.61]). Among the candidate mediators for BMI, only fasting glucose was significantly associated with G1DD status by the inverse-variance weighted method (OR, 4.14 for 1-SD increase in fasting glucose [95% CI, 1.55-11.02]; P=0.005). Multivariable Mendelian randomization showed a modest attenuation of the BMI association (OR, 1.84 [95% CI, 1.35-2.52]) when adjusting for fasting glucose. Conclusions These data suggest that a genetic predisposition to elevated BMI increases the risk for G1DD. Part of this effect may be mediated through altered glucose homeostasis.


Subject(s)
Diabetes Mellitus, Type 2 , Fasting , Body Mass Index , Diabetes Mellitus, Type 2/epidemiology , Genome-Wide Association Study , Glucose , Humans , Mendelian Randomization Analysis , Polymorphism, Single Nucleotide , Risk Factors
19.
J Conserv Dent ; 25(2): 122-127, 2022.
Article in English | MEDLINE | ID: mdl-35720816

ABSTRACT

Background and Aim: To analyze the outcome of fiber placement and orientation over fracture resistance in wide Class II (Mesio-occluso-distal [MOD]) cavities prepared on maxillary premolars. Materials and Methods: After selection of 120 extracted human maxillary premolars, Class II (MOD) cavities were prepared maintaining uniform dimensions and samples were divided into six groups randomly (n = 20 each): Group I, G-aenial posterior; Group II, G-aenial posterior + Horizontal Ribbond placement on gingival and pulpal floor; Group III, G-aenial posterior + Horizontal Ribbond placement only on pulpal floor; Group IV, G-aenial posterior + vertical Ribbond placement on gingival and pulpal floor; Group V, G-aenial posterior + Ribbond chips; Group VI, Ever-X posterior. After restorations and completion of thermocycling process, universal testing machine measured the fracture resistance of all samples. Fracture modes were inspected under stereomicroscope. Analyzation of data was performed using one-way ANOVA and Tukey test at significance levels of P < 0.05. Results: Fiber placement significantly increased fracture resistance. The highest fracture resistance was shown by Group 2 (1288.8 N) followed by Group 3 (976 N), group 4 (942.3 N), Group 5 (876.3 N), and Group 6 (833 N). Group 1 (No Fiber group) showed the least fracture resistance of 588.41 N. Repairable fractures were seen highest with Group 2 (80%) followed by Group 6 (70%) and least in Group 1 (30%). Conclusions: Horizontal orientation of polyethylene fiber on both pulpal and gingival floor of MOD cavities gives the highest fracture resistance in maxillary premolars and repairable mode of fracture.

20.
Circ Res ; 130(9): 1466-1486, 2022 04 29.
Article in English | MEDLINE | ID: mdl-35482834

ABSTRACT

Pulmonary hypertension (PH) describes heterogeneous population of patients with a mean pulmonary arterial pressure >20 mm Hg. Rarely, PH presents as a primary disorder but is more commonly part of a complex phenotype associated with comorbidities. Regardless of the cause, PH reduces life expectancy and impacts quality of life. The current clinical classification divides PH into 1 of 5 diagnostic groups to assign treatment. There are currently no pharmacological cures for any form of PH. Animal models are essential to help decipher the molecular mechanisms underlying the disease, to assign genotype-phenotype relationships to help identify new therapeutic targets, and for clinical translation to assess the mechanism of action and putative efficacy of new therapies. However, limitations inherent of all animal models of disease limit the ability of any single model to fully recapitulate complex human disease. Within the PH community, we are often critical of animal models due to the perceived low success upon clinical translation of new drugs. In this review, we describe the characteristics, advantages, and disadvantages of existing animal models developed to gain insight into the molecular and pathological mechanisms and test new therapeutics, focusing on adult forms of PH from groups 1 to 3. We also discuss areas of improvement for animal models with approaches combining several hits to better reflect the clinical situation and elevate their translational value.


Subject(s)
Heart Failure , Hypertension, Pulmonary , Animals , Disease Models, Animal , Heart Failure/complications , Heart Failure/genetics , Humans , Hypertension, Pulmonary/drug therapy , Quality of Life
SELECTION OF CITATIONS
SEARCH DETAIL
...