Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Angew Chem Int Ed Engl ; 63(6): e202315357, 2024 Feb 05.
Article in English | MEDLINE | ID: mdl-38103255

ABSTRACT

The rapid uptake of lithium ion batteries (LIBs) for large scale electric vehicle and energy storage applications requires a deeper understanding of the degradation mechanisms. Capacity fade is due to the complex interplay between phase transitions, electrolyte decomposition and transition metal dissolution; many of these poorly understood parasitic reactions evolve gases as a side product. Here we present an on-chip electrochemistry mass spectrometry method that enables ultra-sensitive, fully quantified and time resolved detection of volatile species evolving from an operating LIB. The technique's electrochemical performance and mass transport is described by a finite element model and then experimentally used to demonstrate the variety of new insights into LIB performance. We show the versatility of the technique, including (a) observation of oxygen evolving from a LiNiMnCoO2 cathode and (b) the solid electrolyte interphase formation reaction on graphite in a variety of electrolytes, enabling the deconvolution of lithium inventory loss (c) the first direct evidence, by virtue of the improved time resolution of our technique, that carbon dioxide reduction to ethylene takes place in a lithium ion battery. The emerging insight will guide and validate battery lifetime models, as well as inform the design of longer lasting batteries.

2.
ChemSusChem ; 16(12): e202202215, 2023 Jun 22.
Article in English | MEDLINE | ID: mdl-36892133

ABSTRACT

High performance alkali metal anode solid-state batteries require solid/solid interfaces with fast ion transfer that are morphologically and chemically stable upon electrochemical cycling. Void formation at the alkali metal/solid-state electrolyte interface during alkali metal stripping is responsible for constriction resistances and hotspots that can facilitate dendrite propagation and failure. Both externally applied pressures (35-400 MPa) and temperatures above the melting point of the alkali metal have been shown to improve the interfacial contact with the solid electrolyte, preventing the formation of voids. However, the extreme pressure and temperature conditions required can be difficult to meet for commercial solid-state battery applications. In this review, we highlight the importance of interfacial adhesion or 'wetting' at alkali metal/solid electrolyte interfaces for achieving solid-state batteries that can withstand high current densities without cell failure. The intrinsically poor adhesion at metal/ceramic interfaces poses fundamental limitations on many inorganics solid-state electrolyte systems in the absence of applied pressure. Suppression of alkali metal voids can only be achieved for systems with high interfacial adhesion (i. e. 'perfect wetting') where the contact angle between the alkali metal and the solid-state electrolyte surface goes to θ=0°. We identify key strategies to improve interfacial adhesion and suppress void formation including the adoption of interlayers, alloy anodes and 3D scaffolds. Computational modeling techniques have been invaluable for understanding the structure, stability and adhesion of solid-state battery interfaces and we provide an overview of key techniques. Although focused on alkali metal solid-state batteries, the fundamental understanding of interfacial adhesion discussed in this review has broader applications across the field of chemistry and material science from corrosion to biomaterials development.


Subject(s)
Alloys , Ceramics , Computer Simulation , Electric Power Supplies , Electrodes
3.
Chem Mater ; 35(3): 863-869, 2023 Feb 14.
Article in English | MEDLINE | ID: mdl-36818589

ABSTRACT

Understanding the interfacial dynamics of batteries is crucial to control degradation and increase electrochemical performance and cycling life. If the chemical potential of a negative electrode material lies outside of the stability window of an electrolyte (either solid or liquid), a decomposition layer (interphase) will form at the interface. To better understand and control degradation at interfaces in batteries, theoretical models describing the rate of formation of these interphases are required. This study focuses on the growth kinetics of the interphase forming between solid electrolytes and metallic negative electrodes in solid-state batteries. More specifically, we demonstrate that the rate of interphase formation and metal plating during charge can be accurately described by adapting the theory of coupled ion-electron transfer (CIET). The model is validated by fitting experimental data presented in the first part of this study. The data was collected operando as a Na metal layer was plated on top of a NaSICON solid electrolyte (Na3.4Zr2Si2.4P0.6O12 or NZSP) inside an XPS chamber. This study highlights the depth of information which can be extracted from this single operando experiment and is widely applicable to other solid-state electrolyte systems.

4.
Chem Mater ; 35(3): 853-862, 2023 Feb 14.
Article in English | MEDLINE | ID: mdl-36818592

ABSTRACT

To harness all of the benefits of solid-state battery (SSB) architectures in terms of energy density, their negative electrode should be an alkali metal. However, the high chemical potential of alkali metals makes them prone to reduce most solid electrolytes (SE), resulting in a decomposition layer called an interphase at the metal|SE interface. Quantitative information about the interphase chemical composition and rate of formation is challenging to obtain because the reaction occurs at a buried interface. In this study, a thin layer of Na metal (Na0) is plated on the surface of an SE of the NaSICON family (Na3.4Zr2Si2.4P0.6O12 or NZSP) inside a commercial X-ray photoelectron spectroscopy (XPS) system while continuously analyzing the composition of the interphase operando. We identify the existence of a solid electrolyte interphase at the Na0|NZSP interface, and more importantly, we demonstrate for the first time that this protocol can be used to study the kinetics of interphase formation. A second important outcome of this article is that the surface chemistry of NZSP samples can be tuned to improve their stability against Na0. It is demonstrated by XPS and time-resolved electrochemical impedance spectroscopy (EIS) that a native Na x PO y layer present on the surface of as-sintered NZSP samples protects their surface against decomposition.

5.
ACS Appl Mater Interfaces ; 14(16): 18486-18497, 2022 Apr 27.
Article in English | MEDLINE | ID: mdl-35412787

ABSTRACT

Ion intercalation of perovskite oxides in liquid electrolytes is a very promising method for controlling their functional properties while storing charge, which opens up its potential application in different energy and information technologies. Although the role of defect chemistry in oxygen intercalation in a gaseous environment is well established, the mechanism of ion intercalation in liquid electrolytes at room temperature is poorly understood. In this study, the defect chemistry during ion intercalation of La0.5Sr0.5FeO3-δ thin films in alkaline electrolytes is studied. Oxygen and proton intercalation into the La1-xSrxFeO3-δ perovskite structure is observed at moderate electrochemical potentials (0.5 to -0.4 V), giving rise to a change in the oxidation state of Fe (as a charge compensation mechanism). The variation of the concentration of holes as a function of the intercalation potential is characterized by in situ ellipsometry, and the concentration of electron holes is indirectly quantified for different electrochemical potentials. Finally, a dilute defect chemistry model that describes the variation of defect species during ionic intercalation is developed.

6.
Adv Mater ; 33(48): e2105622, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34611954

ABSTRACT

Tuning oxygen mass transport properties at the nanoscale offers a promising approach for developing high performing energy materials. A number of strategies for engineering interfaces with enhanced oxygen diffusivity and surface exchange have been proposed. However, the origin and the magnitude of such local effects remain largely undisclosed to date due to the lack of direct measurement tools with sufficient resolution. In this work, atom probe tomography with sub-nanometer resolution is used to study oxygen mass transport on oxygen-isotope exchanged thin films of lanthanum chromite. A direct 3D visualization of nanoscaled highly conducting oxygen incorporation pathways along grain boundaries, with reliable quantification of the oxygen kinetic parameters and correlative link to local chemistries, is presented. Combined with finite element simulations of the exact nanostructure, isotope exchange-atom probe tomography allowed quantifying an enhancement in the grain boundary oxygen diffusivity and in the surface exchange coefficient of lanthanum chromite of about 4 and 3 orders of magnitude, respectively, compared to the bulk. This remarkable increase of the oxygen kinetics in an interface-dominated material is unambiguously attributed to grain boundary conduction highways thanks to the use of a powerful technique that can be straightforwardly extended to the study of currently inaccessible multiple nanoscale mass transport phenomena.

7.
J Phys Chem C Nanomater Interfaces ; 125(30): 16719-16732, 2021 Aug 05.
Article in English | MEDLINE | ID: mdl-34476038

ABSTRACT

"Anode-free" batteries present a significant advantage due to their substantially higher energy density and ease of assembly in a dry air atmosphere. However, issues involving lithium dendrite growth and low cycling Coulombic efficiencies during operation remain to be solved. Solid electrolyte interphase (SEI) formation on Cu and its effect on Li plating are studied here to understand the interplay between the Cu current collector surface chemistry and plated Li morphology. A native interphase layer (N-SEI) on the Cu current collector was observed with solid-state nuclear magnetic resonance spectroscopy (ssNMR) and electrochemical impedance spectroscopy (EIS). Cyclic voltammetry (CV) and time-of-flight secondary ion mass spectrometry (ToF-SIMS) studies showed that the nature of the N-SEI is affected by the copper interface composition. An X-ray photoelectron spectroscopy (XPS) study identified a relationship between the applied voltage and SEI composition. In addition to the typical SEI components, the SEI contains copper oxides (Cu x O) and their reduction reaction products. Parasitic electrochemical reactions were observed via in situ NMR measurements of Li plating efficiency. Scanning electron microscopy (SEM) studies revealed a correlation between the morphology of the plated Li and the SEI homogeneity, current density, and rest time in the electrolyte before plating. Via ToF-SIMS, we found that the preferential plating of Li on Cu is governed by the distribution of ionically conducting rather than electronic conducting compounds. The results together suggest strategies for mitigating dendrite formation by current collector pretreatment and controlled SEI formation during the first battery charge.

8.
ACS Appl Mater Interfaces ; 12(30): 34388-34401, 2020 Jul 29.
Article in English | MEDLINE | ID: mdl-32627535

ABSTRACT

Electrodes in solid-state energy devices are subjected to a variety of thermal treatments, from film processing to device operation at high temperatures. All these treatments influence the chemical activity and stability of the films, as the thermally induced chemical restructuring shapes the microstructure and the morphology. Here, we investigate the correlation between the oxygen reduction reaction (ORR) activity and thermal history in complex transition metal oxides, in particular, La0.6Sr0.4CoO3-δ (LSC64) thin films deposited by pulsed laser deposition. To this end, three ∼200 nm thick LSC64 films with different processing and thermal histories were studied. A variety of surface-sensitive elemental characterization techniques (i.e., low-energy ion scattering, X-ray photoelectron spectroscopy, and secondary ion mass spectrometry) were employed to thoroughly investigate the cationic distribution from the outermost surface to the film/substrate interface. Moreover, electrochemical impedance spectroscopy was used to study the activity and the stability of the films. Our investigations revealed that, despite the initial comparable ORR activity at 600 °C, the degradation rates of the films differed by twofold in the long-term stability tests at 500 °C. Here, we emphasize the importance of processing and thermal history in the elemental surface distribution, especially for the stability of LSC64 electrodes and propose that they should be considered as among the main pillars in the design of active surfaces.

9.
ACS Appl Mater Interfaces ; 12(29): 32806-32816, 2020 Jul 22.
Article in English | MEDLINE | ID: mdl-32573199

ABSTRACT

Garnet-type structured lithium ion conducting ceramics represent a promising alternative to liquid-based electrolytes for all-solid-state batteries. However, their performance is limited by their polycrystalline nature and inherent inhomogeneous current distribution due to different ion dynamics at grains, grain boundaries, and interfaces. In this study, we use a combination of electrochemical impedance spectroscopy, distribution of relaxation time analysis, and solid-state nuclear magnetic resonance (NMR), in order to understand the role that bulk, grain boundary, and interfacial processes play in the ionic transport and electrochemical performance of garnet-based cells. Variable temperature impedance analysis reveals the lowest activation energy for Li transport in the bulk of the garnet electrolyte (0.15 eV), consistent with pulsed field gradient NMR spectroscopy measurements (0.14 eV). We also show a decrease in grain boundary activation energy at temperatures below 0 °C, that is followed by the total conductivity, suggesting that the bottleneck to ionic transport resides in the grain boundaries. We reveal that the grain boundary activation energy is heavily affected by its composition that, in turn, is mainly affected by the segregation of dopants and Li. We suggest that by controlling the grain boundary composition, it would be possible to pave the way toward targeted engineering of garnet-type electrolytes and ameliorate their electrochemical performance in order to enable their use in commercial devices.

10.
ACS Appl Mater Interfaces ; 9(43): 37823-37831, 2017 Nov 01.
Article in English | MEDLINE | ID: mdl-29022694

ABSTRACT

The lithium storage properties of the distorted metal-organic framework-derived nanosized ZnO@C are significantly improved by the introduction of Ag2S quantum dots (QDs) during the processing of the material. In the thermal treatment, the Ag2S QDs react to produce Ag nanoparticles and ZnS. The metal nanoparticles act to shorten electron pathways and improve the connectivity of the matrix, and the partial sulfidation of the ZnO surface improves the cycling stability of the material. The electrochemical properties of ZnO@C, Ag2S QDs-treated ZnO@C, and the amorphous carbon in ZnO@C have been compared. The small weight ratio of Ag2S QDs to ZnO@C at 1:180 shows the best performance in lithium storage. The exhibited specific capacities are improved and retained remarkably in the cycling at high current rates. At low current densities (200 mA g-1), treatment of ZnO@C with Ag2S QDs results in a 38% increase in the specific capacity.

SELECTION OF CITATIONS
SEARCH DETAIL
...