ABSTRACT
Pinus radiata (PR) and Eucalyptus globulus (EG) are the most planted species in Chile. This research aims to evaluate the pyrolysis behaviour of PR and EG from the Bío Bío region in Chile. Biomass samples were subjected to microwave pretreatment considering power (259, 462, 595, and 700 W) and time (1, 2, 3, and 5 min). The maximum temperature reached was 147.69 °C for PR and 130.71 °C for EG in the 700 W-5 min condition, which caused the rearrangement of the cellulose crystalline chains through vibration and an increase in the internal energy of the biomass and the decomposition of lignin due to reaching its glass transition temperature. Thermogravimetric analysis revealed an activation energy (Ea) reduction from 201.71 to 174.91 kJ·mol-1 in PR and from 174.80 to 158.51 kJ·mol-1 in EG, compared to the untreated condition (WOT) for the 700 W-5 min condition, which indicates that microwave pretreatment improves the activity of the components and the decomposition of structural compounds for subsequent pyrolysis. Functional groups were identified by Fourier transform infrared spectroscopy (FTIR). A decrease in oxygenated compounds such as acids (from 21.97 to 17.34% w·w-1 and from 27.72 to 24.13% w·w-1) and phenols (from 34.41 to 31.95% w·w-1 and from 21.73 to 20.24% w·w-1) in PR and EG, respectively, was observed in comparison to the WOT for the 700 W-5 min condition, after analytical pyrolysis. Such results demonstrate the positive influence of the pretreatment on the reduction in oxygenated compounds obtained from biomass pyrolysis.
ABSTRACT
Kraft pulp cellulose was hydrolyzed using sulfuric acid, under different thermophysical conditions of temperature, time, pulp concentration, and sonication time. The experimental design revealed the effect of these conditions and their interaction on the hydrolysis yield obtained. In addition, the top five cellulose nanocrystals (CNCs) yields from this experiment design were analyzed. The results obtained indicated that CNCs possess a morphology that can be described as individualized rod particles, with average diameters less than 50 nm and different size distribution. In the analysis of CNCs features, significant Pearson correlations were established between the crystallinity of the CNC, CNC yield, and interplanar crystallites distance (Δd/d). The thermogravimetric (DTG) profiles exhibited two CNCs degradation stages, where the second stage CNCs degradation showed a significative correlation with CNC sulfur content. In our analysis, the crystallographic parameters exhibited a correlation with the mechanical behavior of the CNC, since the potential variation between the distances of the crystalline planes is related to the stress and deformation present in the crystallites of CNCs. This study provides new knowledge regarding CNCs, further enhancing information for CNC-based industries and the processability of CNCs for the development of new materials.
ABSTRACT
Forestry industries in Chile are facing an important challenge-diversifying their products using green technologies. In this study, the potential use of Ionic Liquids (ILs) to dissolve and hydrolyze eucalyptus wood (mix of Eucalyptus nitens and Eucalyptus globulus) kraft pulp was studied. The Bleached Hardwood Kraft Pulp (BHKP) from a Chilean pulp mill was used together with five different ILs: 1-butyl-3-methylimidazolium chloride [bmim][Cl], 1-butyl-3-methylimidazolium acetate [bmim][Ac], 1-butyl-3-methylimidazolium hydrogen sulfate [bmim][HSO4], 1-ethyl-3-methylimidazolium chloride [emim][Cl], 1-ethyl-3-methylimidazolium acetate [emim][Ac]. Experimentally, one vacuum reactor was designed to study the dissolution/hydrolysis process for each ILs; particularly, the cellulose dissolution process using [bmim][Cl] was studied proposing one molecular dynamic model. Experimental characterization using Atomic Force Microscopy, conductometric titration, among other techniques suggest that all ILs are capable of cellulose dissolution at different levels; in some cases, the dissolution evolved to partial hydrolysis appearing cellulose nanocrystals (CNC) in the form of spherical aggregates with a diameter of 40-120 nm. Molecular dynamics simulations showed that the [bmim][Cl] anions tend to interact actively with cellulose sites and water molecules in the dissolution process. The results showed the potential of some ILs to dissolve/hydrolyze the cellulose from Chilean Eucalyptus, maintaining reactive forms.
ABSTRACT
In the final process of the bleached kraft pulp there are some cellulose fibers that are separated from the main fibers stream; these fibers are rejected and considered as a low quality fibers, these fibers are known as rejected fiber (RF). In the present work the potential use of these fibers for Cellulose Nanocrystals (CNCs) synthesis was studied. The physical and chemical properties of synthesized CNCs were characterized through different techniques such as Atomic Force Microscopy (AFM), Scanning Electron Microscopy (SEM), X-Ray Diffraction (XRD), Fourier-Transform Infrared Spectroscopy (FTIR), and Thermogravimetric Analysis (TGA). Results demonstrate the feasibility of CNCs synthesis with a yield of 28.1% and 36.9%, and crystallinity of 73.5% and 82.7%. Finally, the morphology and synthesis conditions suggest that this industrial reject fiber (RF) could be used as a source for the CNCs production, thus adding value to the kraft process and opening new possibilities for innovation in the pulp industry.