Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 21
Filter
Add more filters











Publication year range
1.
iScience ; 24(12): 103369, 2021 Dec 17.
Article in English | MEDLINE | ID: mdl-34849464

ABSTRACT

Colon cancer is initiated by stem cells that escape the strict control. This process is often driven through aberrant activation of Wnt signaling by mutations in components acting downstream of the receptor complex that unfetter tumor cells from the need for Wnts. Here we describe a class of colon cancer that does not depend on mutated core components of the Wnt pathway. Genetically blocking Wnt secretion from epithelial cells of such tumors results in apoptosis, reduced expression of colon cancer markers, followed by enhanced tumor differentiation. In contrast to the normal colonic epithelium, such tumor cells autosecrete Wnts to maintain their uncontrolled proliferative behavior. In humans, we determined certain cases of colon cancers in which the Wnt pathway is hyperactive, but not through mutations in its core components. Our findings illuminate the path in therapy to find further subtypes of Wnt-dependent colon cancer that might be responsive to Wnt secretion inhibitors.

2.
Elife ; 92020 08 18.
Article in English | MEDLINE | ID: mdl-32808927

ABSTRACT

BCL9 and PYGO are ß-catenin cofactors that enhance the transcription of Wnt target genes. They have been proposed as therapeutic targets to diminish Wnt signaling output in intestinal malignancies. Here we find that, in colorectal cancer cells and in developing mouse forelimbs, BCL9 proteins sustain the action of ß-catenin in a largely PYGO-independent manner. Our genetic analyses implied that BCL9 necessitates other interaction partners in mediating its transcriptional output. We identified the transcription factor TBX3 as a candidate tissue-specific member of the ß-catenin transcriptional complex. In developing forelimbs, both TBX3 and BCL9 occupy a large number of Wnt-responsive regulatory elements, genome-wide. Moreover, mutations in Bcl9 affect the expression of TBX3 targets in vivo, and modulation of TBX3 abundance impacts on Wnt target genes transcription in a ß-catenin- and TCF/LEF-dependent manner. Finally, TBX3 overexpression exacerbates the metastatic potential of Wnt-dependent human colorectal cancer cells. Our work implicates TBX3 as context-dependent component of the Wnt/ß-catenin-dependent transcriptional complex.


Subject(s)
T-Box Domain Proteins/genetics , Transcription Factors/genetics , Wnt Signaling Pathway , Animals , Female , HCT116 Cells , Humans , Male , Mice , Organ Specificity , T-Box Domain Proteins/metabolism , Transcription Factors/metabolism , Tumor Cells, Cultured , Zebrafish
3.
Genes Dev ; 32(21-22): 1443-1458, 2018 11 01.
Article in English | MEDLINE | ID: mdl-30366904

ABSTRACT

Bcl9 and Pygopus (Pygo) are obligate Wnt/ß-catenin cofactors in Drosophila, yet their contribution to Wnt signaling during vertebrate development remains unresolved. Combining zebrafish and mouse genetics, we document a conserved, ß-catenin-associated function for BCL9 and Pygo proteins during vertebrate heart development. Disrupting the ß-catenin-BCL9-Pygo complex results in a broadly maintained canonical Wnt response yet perturbs heart development and proper expression of key cardiac regulators. Our work highlights BCL9 and Pygo as selective ß-catenin cofactors in a subset of canonical Wnt responses during vertebrate development. Moreover, our results implicate alterations in BCL9 and BCL9L in human congenital heart defects.


Subject(s)
Heart Defects, Congenital/genetics , Intracellular Signaling Peptides and Proteins/genetics , Transcription Factors/genetics , Wnt Signaling Pathway , Zebrafish Proteins/genetics , Adaptor Proteins, Signal Transducing , Animals , Heart/embryology , Mice , Mutation , Myocardium/metabolism , Zebrafish/embryology , Zebrafish/genetics , beta Catenin/metabolism
4.
Annu Rev Pathol ; 13: 117-140, 2018 01 24.
Article in English | MEDLINE | ID: mdl-29068753

ABSTRACT

Metastases are responsible for the vast majority of cancer-related deaths, but, despite intense efforts to understand their underlying mechanisms with the goal of uncovering effective therapeutic targets, treatment of metastatic cancer has progressed minimally. In this review, we examine the biological programs currently proposed to be key drivers of metastasis. On the basis of evidence from a growing body of research, we discuss to what extent the cellular and molecular mechanisms that are suggested to underlie cancer cell dissemination are specific to the metastatic process, as opposed to representing natural primary tumor progression. Our review highlights the contrast between the abundance of insight gained into the events that constitute the metastatic cascade and the paucity of therapeutic options.


Subject(s)
Neoplasm Invasiveness/pathology , Neoplasm Metastasis/pathology , Neoplasms/pathology , Neoplastic Stem Cells/pathology , Humans
5.
Mol Cancer Ther ; 16(8): 1497-1510, 2017 08.
Article in English | MEDLINE | ID: mdl-28468777

ABSTRACT

Acute myelogenous leukemia (AML) is initiated and maintained by leukemia stem cells (LSC). LSCs are therapy-resistant, cause relapse, and represent a major obstacle for the cure of AML. Resistance to therapy is often mediated by aberrant tyrosine kinase (TK) activation. These TKs primarily activate downstream signaling via STAT3/STAT5. In this study, we analyzed the potential to therapeutically target aberrant TK signaling and to eliminate LSCs via the multi-TK inhibitor Debio 0617B. Debio 0617B has a unique profile targeting key kinases upstream of STAT3/STAT5 signaling such as JAK, SRC, ABL, and class III/V receptor TKs. We demonstrate that expression of phospho-STAT3 (pSTAT3) in AML blasts is an independent prognostic factor for overall survival. Furthermore, phospho-STAT5 (pSTAT5) signaling is increased in primary CD34+ AML stem/progenitors. STAT3/STAT5 activation depends on tyrosine phosphorylation, mediated by several upstream TKs. Inhibition of single upstream TKs did not eliminate LSCs. In contrast, the multi-TK inhibitor Debio 0617B reduced maintenance and self-renewal of primary human AML CD34+ stem/progenitor cells in vitro and in xenotransplantation experiments resulting in long-term elimination of human LSCs and leukemia. Therefore, inhibition of multiple TKs upstream of STAT3/5 may result in sustained therapeutic efficacy of targeted therapy in AML and prevent relapses. Mol Cancer Ther; 16(8); 1497-510. ©2017 AACR.


Subject(s)
Antigens, CD34/metabolism , Cell Self Renewal/drug effects , Isoxazoles/pharmacology , Leukemia, Myeloid, Acute/pathology , Neoplastic Stem Cells/pathology , Picolinic Acids/pharmacology , Protein Kinase Inhibitors/pharmacology , Pyrimidines/pharmacology , Animals , Apoptosis/drug effects , Biomarkers, Tumor/metabolism , Cell Line, Tumor , Cell Proliferation/drug effects , Disease Progression , Female , Humans , Mice, Inbred NOD , Neoplastic Stem Cells/drug effects , Neoplastic Stem Cells/metabolism , Phosphorylation/drug effects , Prognosis , STAT5 Transcription Factor/metabolism , Signal Transduction/drug effects , Survival Analysis , Tumor Stem Cell Assay , Xenograft Model Antitumor Assays
6.
Mol Cancer Ther ; 15(10): 2334-2343, 2016 10.
Article in English | MEDLINE | ID: mdl-27439479

ABSTRACT

Tumor survival, metastases, chemoresistance, and escape from immune responses have been associated with inappropriate activation of STAT3 and/or STAT5 in various cancers, including solid tumors. Debio 0617B has been developed as a first-in-class kinase inhibitor with a unique profile targeting phospho-STAT3 (pSTAT3) and/or pSTAT5 in tumors through combined inhibition of JAK, SRC, ABL, and class III/V receptor tyrosine kinases (RTK). Debio 0617B showed dose-dependent inhibition of pSTAT3 in STAT3-activated carcinoma cell lines; Debio 0617B also showed potent antiproliferative activity in a panel of cancer cell lines and in patient-derived tumor xenografts tested in an in vitro clonogenic assay. Debio 0617B showed in vivo efficacy by inhibiting tumor growth in several mouse xenograft models. To increase in vivo efficacy and STAT3 inhibition, Debio 0617B was tested in combination with the EGFR inhibitor erlotinib in a non-small cell lung cancer xenograft model. To evaluate the impact of in vivo STAT3 blockade on metastases, Debio 0617B was tested in an orthotopic tumor model. Measurement of primary tumor weight and metastatic counts in lung tissue demonstrated therapeutic efficacy of Debio 0617B in this model. These data show potent activity of Debio 0617B on a broad spectrum of STAT3-driven solid tumors and synergistic activity in combination with EGFR inhibition. Mol Cancer Ther; 15(10); 2334-43. ©2016 AACR.


Subject(s)
Antineoplastic Agents/pharmacology , Janus Kinases/antagonists & inhibitors , Neoplasms/metabolism , Protein Kinase Inhibitors/pharmacology , Receptor Protein-Tyrosine Kinases/antagonists & inhibitors , STAT3 Transcription Factor/metabolism , src-Family Kinases/antagonists & inhibitors , Animals , Antineoplastic Agents/chemistry , Apoptosis/drug effects , Cell Line, Tumor , Disease Models, Animal , Drug Design , Humans , Janus Kinases/chemistry , Mice , Molecular Conformation , Molecular Docking Simulation , Molecular Dynamics Simulation , Neoplasm Metastasis , Neoplasms/drug therapy , Neoplasms/pathology , Protein Kinase Inhibitors/chemistry , Receptor Protein-Tyrosine Kinases/chemistry , Signal Transduction/drug effects , Tumor Burden/drug effects , Xenograft Model Antitumor Assays , src-Family Kinases/chemistry
7.
Cell Rep ; 15(5): 911-918, 2016 05 03.
Article in English | MEDLINE | ID: mdl-27117411

ABSTRACT

Targeting of Wnt signaling represents a promising anti-cancer therapy. However, the consequences of systemically attenuating the Wnt pathway in an adult organism are unknown. Here, we globally prevent Wnt secretion by genetically ablating Wntless. We find that preventing Wnt signaling in the entire body causes mortality due to impaired intestinal homeostasis. This is caused by the loss of intestinal stem cells. Reconstitution of Wnt/ß-catenin signaling via delivery of external Wnt ligands prolongs the survival of intestinal stem cells and reveals the essential role of extra-epithelial Wnt ligands for the renewal of the intestinal epithelium. Wnt2b is a key extra-epithelial Wnt ligand capable of promoting Wnt/ß-catenin signaling and intestinal homeostasis. Wnt2b is secreted by subepithelial mesenchymal cells that co-express either Gli1 or Acta2. Subepithelial mesenchymal cells expressing high levels of Wnt2b are predominantly Gli1 positive.


Subject(s)
Epithelial Cells/metabolism , Homeostasis , Intestinal Mucosa/cytology , Mesenchymal Stem Cells/metabolism , Wnt Proteins/metabolism , Animals , Cell Self Renewal , Cell Survival , Ligands , Mice , beta Catenin/metabolism
8.
Sci Rep ; 6: 22113, 2016 Feb 24.
Article in English | MEDLINE | ID: mdl-26905812

ABSTRACT

Expression of the SS18/SYT-SSX fusion protein is believed to underlie the pathogenesis of synovial sarcoma (SS). Recent evidence suggests that deregulation of the Wnt pathway may play an important role in SS but the mechanisms whereby SS18-SSX might affect Wnt signaling remain to be elucidated. Here, we show that SS18/SSX tightly regulates the elevated expression of the key Wnt target AXIN2 in primary SS. SS18-SSX is shown to interact with TCF/LEF, TLE and HDAC but not ß-catenin in vivo and to induce Wnt target gene expression by forming a complex containing promoter-bound TCF/LEF and HDAC but lacking ß-catenin. Our observations provide a tumor-specific mechanistic basis for Wnt target gene induction in SS that can occur in the absence of Wnt ligand stimulation.


Subject(s)
Gene Expression Profiling/methods , Oncogene Proteins, Fusion/genetics , Transcription Factors/genetics , Wnt Signaling Pathway/genetics , Animals , Axin Protein/genetics , Axin Protein/metabolism , Blotting, Western , Cell Line , Cell Line, Tumor , Co-Repressor Proteins , Histone Deacetylases/genetics , Histone Deacetylases/metabolism , Humans , Mice , Microscopy, Confocal , Oncogene Proteins, Fusion/metabolism , RNA Interference , Repressor Proteins/genetics , Repressor Proteins/metabolism , Reverse Transcriptase Polymerase Chain Reaction , Sarcoma, Synovial/genetics , Sarcoma, Synovial/metabolism , Sarcoma, Synovial/pathology , TCF Transcription Factors/genetics , TCF Transcription Factors/metabolism , Transcription Factors/metabolism , beta Catenin/genetics , beta Catenin/metabolism
9.
EBioMedicine ; 2(12): 1932-43, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26844272

ABSTRACT

BCL9/9L proteins enhance the transcriptional output of the ß-catenin/TCF transcriptional complex and contribute critically to upholding the high WNT signaling level required for stemness maintenance in the intestinal epithelium. Here we show that a BCL9/9L-dependent gene signature derived from independent mouse colorectal cancer (CRC) models unprecedentedly separates patient subgroups with regard to progression free and overall survival. We found that this effect was by and large attributable to stemness related gene sets. Remarkably, this signature proved associated with recently described poor prognosis CRC subtypes exhibiting high stemness and/or epithelial-to-mesenchymal transition (EMT) traits. Consistent with the notion that high WNT signaling is required for stemness maintenance, ablating Bcl9/9l-ß-catenin in murine oncogenic intestinal organoids provoked their differentiation and completely abrogated their tumorigenicity, while not affecting their proliferation. Therapeutic strategies aimed at targeting WNT responses may be limited by intestinal toxicity. Our findings suggest that attenuating WNT signaling to an extent that affects stemness maintenance without disturbing intestinal renewal might be well tolerated and prove sufficient to reduce CRC recurrence and dramatically improve disease outcome.


Subject(s)
Colorectal Neoplasms/metabolism , Colorectal Neoplasms/mortality , Neoplasm Proteins/metabolism , Signal Transduction , beta Catenin/metabolism , Animals , Cell Transformation, Neoplastic/genetics , Cell Transformation, Neoplastic/metabolism , Cluster Analysis , Colorectal Neoplasms/genetics , Colorectal Neoplasms/pathology , Datasets as Topic , Disease Models, Animal , Gene Expression Profiling , Gene Expression Regulation, Neoplastic , Gene Knockout Techniques , Humans , Mice , Mice, Knockout , Neoplasm Proteins/antagonists & inhibitors , Neoplasm Proteins/genetics , Neoplastic Stem Cells/metabolism , Phenotype , Prognosis , Sequence Deletion , Transcription Factors , Transcriptome , beta Catenin/antagonists & inhibitors , beta Catenin/genetics
10.
Genes Dev ; 28(17): 1879-84, 2014 Sep 01.
Article in English | MEDLINE | ID: mdl-25184676

ABSTRACT

Bcl9 and Bcl9l (Bcl9/9l) encode Wnt signaling components that mediate the interaction between ß-catenin and Pygopus (Pygo) via two evolutionarily conserved domains, HD1 and HD2, respectively. We generated mouse strains lacking these domains to probe the ß-catenin-dependent and ß-catenin-independent roles of Bcl9/9l and Pygo during mouse development. While lens development is critically dependent on the presence of the HD1 domain, it is not affected by the lack of the HD2 domain, indicating that Bcl9/9l act in this context in a ß-catenin-independent manner. Furthermore, we uncover a new regulatory circuit in which Pax6, the master regulator of eye development, directly activates Bcl9/9l transcription.


Subject(s)
Eye Proteins/metabolism , Gene Expression Regulation, Developmental , Homeodomain Proteins/metabolism , Lens, Crystalline/embryology , Neoplasm Proteins/genetics , Neoplasm Proteins/metabolism , Paired Box Transcription Factors/metabolism , Repressor Proteins/metabolism , Animals , Cells, Cultured , Eye Proteins/genetics , Gene Knock-In Techniques , Homeodomain Proteins/genetics , Intracellular Signaling Peptides and Proteins/metabolism , Mice , Mice, Inbred C57BL , PAX6 Transcription Factor , Paired Box Transcription Factors/genetics , Protein Structure, Tertiary/genetics , Repressor Proteins/genetics , Signal Transduction , Transcription Factors/metabolism , Wnt Proteins/metabolism , beta Catenin/genetics , beta Catenin/metabolism
11.
Development ; 140(11): 2377-86, 2013 Jun.
Article in English | MEDLINE | ID: mdl-23637336

ABSTRACT

Pygopus has been discovered as a fundamental Wnt signaling component in Drosophila. The mouse genome encodes two Pygopus homologs, Pygo1 and Pygo2. They serve as context-dependent ß-catenin coactivators, with Pygo2 playing the more important role. All Pygo proteins share a highly conserved plant homology domain (PHD) that allows them to bind di- and trimethylated lysine 4 of histone H3 (H3K4me2/3). Despite the structural conservation of this domain, the relevance of histone binding for the role of Pygo2 as a Wnt signaling component and as a reader of chromatin modifications remains speculative. Here we generate a knock-in mouse line, homozygous for a Pygo2 mutant defective in chromatin binding. We show that even in the absence of the potentially redundant Pygo1, Pygo2 does not require the H3K4me2/3 binding activity to sustain its function during mouse development. Indeed, during tissue homeostasis, Wnt/ß-catenin-dependent transcription is largely unaffected. However, the Pygo2-chromatin interaction is relevant in testes, where, importantly, Pygo2 binds in vivo to the chromatin in a PHD-dependent manner. Its presence on regulatory regions does not affect the transcription of nearby genes; rather, it is important for the recruitment of the histone acetyltransferase Gcn5 to chromatin, consistent with a testis-specific and Wnt-unrelated role for Pygo2 as a chromatin remodeler.


Subject(s)
Drosophila Proteins/metabolism , Gene Expression Regulation, Developmental , Histones/metabolism , Intracellular Signaling Peptides and Proteins/metabolism , Wnt Signaling Pathway , Animals , Chromatin Assembly and Disassembly , Drosophila Proteins/genetics , Drosophila melanogaster/genetics , Drosophila melanogaster/physiology , Female , Fertility , Gene Knock-In Techniques , Genotype , Intracellular Signaling Peptides and Proteins/genetics , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Protein Interaction Domains and Motifs , Testis/metabolism , p300-CBP Transcription Factors/metabolism
12.
BMC Genomics ; 13: 274, 2012 Jun 22.
Article in English | MEDLINE | ID: mdl-22726358

ABSTRACT

BACKGROUND: The criteria for choosing relevant cell lines among a vast panel of available intestinal-derived lines exhibiting a wide range of functional properties are still ill-defined. The objective of this study was, therefore, to establish objective criteria for choosing relevant cell lines to assess their appropriateness as tumor models as well as for drug absorption studies. RESULTS: We made use of publicly available expression signatures and cell based functional assays to delineate differences between various intestinal colon carcinoma cell lines and normal intestinal epithelium. We have compared a panel of intestinal cell lines with patient-derived normal and tumor epithelium and classified them according to traits relating to oncogenic pathway activity, epithelial-mesenchymal transition (EMT) and stemness, migratory properties, proliferative activity, transporter expression profiles and chemosensitivity. For example, SW480 represent an EMT-high, migratory phenotype and scored highest in terms of signatures associated to worse overall survival and higher risk of recurrence based on patient derived databases. On the other hand, differentiated HT29 and T84 cells showed gene expression patterns closest to tumor bulk derived cells. Regarding drug absorption, we confirmed that differentiated Caco-2 cells are the model of choice for active uptake studies in the small intestine. Regarding chemosensitivity we were unable to confirm a recently proposed association of chemo-resistance with EMT traits. However, a novel signature was identified through mining of NCI60 GI50 values that allowed to rank the panel of intestinal cell lines according to their drug responsiveness to commonly used chemotherapeutics. CONCLUSIONS: This study presents a straightforward strategy to exploit publicly available gene expression data to guide the choice of cell-based models. While this approach does not overcome the major limitations of such models, introducing a rank order of selected features may allow selecting model cell lines that are more adapted and pertinent to the addressed biological question.


Subject(s)
Databases, Genetic , Models, Biological , Antineoplastic Agents/pharmacology , Caco-2 Cells , Cell Differentiation/drug effects , Cell Line, Tumor , Colonic Neoplasms/genetics , Colonic Neoplasms/metabolism , Drug Resistance, Neoplasm , Epithelial-Mesenchymal Transition/drug effects , Gene Expression Regulation, Neoplastic , HT29 Cells , Humans , Intestinal Mucosa/cytology , Intestinal Mucosa/metabolism , Principal Component Analysis
13.
Genes Dev ; 25(24): 2631-43, 2011 Dec 15.
Article in English | MEDLINE | ID: mdl-22190459

ABSTRACT

ß-Catenin, apart from playing a cell-adhesive role, is a key nuclear effector of Wnt signaling. Based on activity assays in Drosophila, we generated mouse strains where the endogenous ß-catenin protein is replaced by mutant forms, which retain the cell adhesion function but lack either or both of the N- and the C-terminal transcriptional outputs. The C-terminal activity is essential for mesoderm formation and proper gastrulation, whereas N-terminal outputs are required later during embryonic development. By combining the double-mutant ß-catenin with a conditional null allele and a Wnt1-Cre driver, we probed the role of Wnt/ß-catenin signaling in dorsal neural tube development. While loss of ß-catenin protein in the neural tube results in severe cell adhesion defects, the morphology of cells and tissues expressing the double-mutant form is normal. Surprisingly, Wnt/ß-catenin signaling activity only moderately regulates cell proliferation, but is crucial for maintaining neural progenitor identity and for neuronal differentiation in the dorsal spinal cord. Our model animals thus allow dissecting signaling and structural functions of ß-catenin in vivo and provide the first genetic tool to generate cells and tissues that entirely and exclusively lack canonical Wnt pathway activity.


Subject(s)
Gene Expression Regulation, Developmental , beta Catenin/genetics , beta Catenin/metabolism , Adherens Junctions/genetics , Animals , Epithelial Cells/cytology , Epithelial Cells/pathology , Gastrulation/genetics , Mice , Mice, Inbred Strains , Mutation , Signal Transduction/genetics , Spinal Cord/cytology , Spinal Cord/embryology , Wnt Proteins/metabolism , Wnt Signaling Pathway/genetics
14.
Cancer Res ; 70(16): 6619-28, 2010 Aug 15.
Article in English | MEDLINE | ID: mdl-20682801

ABSTRACT

Canonical Wnt signaling plays a critical role in stem cell maintenance in epithelial homeostasis and carcinogenesis. Here, we show that in the mouse this role is critically mediated by Bcl9/Bcl9l, the mammalian homologues of Legless, which in Drosophila is required for Armadillo/beta-catenin signaling. Conditional ablation of Bcl9/Bcl9l in the intestinal epithelium, where the essential role of Wnt signaling in epithelial homeostasis and stem cell maintenance is well documented, resulted in decreased expression of intestinal stem cell markers and impaired regeneration of ulcerated colon epithelium. Adenocarcinomas with aberrant Wnt signaling arose with similar incidence in wild-type and mutant mice. However, transcriptional profiles were vastly different: Whereas wild-type tumors displayed characteristics of epithelial-mesenchymal transition (EMT) and stem cell-like properties, these properties were largely abrogated in mutant tumors. These findings reveal an essential role for Bcl9/Bcl9l in regulating a subset of Wnt target genes involved in controlling EMT and stem cell-related features and suggest that targeting the Bcl9/Bcl9l arm of Wnt signaling in Wnt-activated cancers might attenuate these traits, which are associated with tumor invasion, metastasis, and resistance to therapy.


Subject(s)
Adenocarcinoma/pathology , Colonic Neoplasms/pathology , Intracellular Signaling Peptides and Proteins/metabolism , Neoplastic Stem Cells/pathology , Wnt Proteins/metabolism , Adenocarcinoma/genetics , Adenocarcinoma/metabolism , Animals , Colonic Neoplasms/genetics , Colonic Neoplasms/metabolism , Intracellular Signaling Peptides and Proteins/genetics , Mice , Mice, Transgenic , Neoplastic Stem Cells/physiology , Transcription Factors , Wnt Proteins/biosynthesis , Wnt Proteins/genetics
15.
Dev Biol ; 335(1): 93-105, 2009 Nov 01.
Article in English | MEDLINE | ID: mdl-19699733

ABSTRACT

Muscle stem cells and their progeny play a fundamental role in the regeneration of adult skeletal muscle. We have previously shown that activation of the canonical Wnt/beta-catenin signaling pathway in adult myogenic progenitors is required for their transition from rapidly dividing transient amplifying cells to more differentiated progenitors. Whereas Wnt signaling in Drosophila is dependent on the presence of the co-regulator Legless, previous studies of the mammalian ortholog of Legless, BCL9 (and its homolog, BCL9-2), have not revealed an essential role of these proteins in Wnt signaling in specific tissues during development. Using Cre-lox technology to delete BCL9 and BCL9-2 in the myogenic lineage in vivo and RNAi technology to knockdown the protein levels in vitro, we show that BCL9 is required for activation of the Wnt/beta-catenin cascade in adult mammalian myogenic progenitors. We observed that the nuclear localization of beta-catenin and downstream TCF/LEF-mediated transcription, which are normally observed in myogenic progenitors upon addition of exogenous Wnt and during muscle regeneration, were abrogated when BCL9/9-2 levels were reduced. Furthermore, reductions of BCL9/9-2 inhibited the promotion of myogenic differentiation by Wnt and the normal regenerative response of skeletal muscle. These results suggest a critical role of BCL9/9-2 in the Wnt-mediated regulation of adult, as opposed to embryonic, myogenic progenitors.


Subject(s)
Cell Differentiation/physiology , Intracellular Signaling Peptides and Proteins/metabolism , Muscle Development/physiology , Muscle, Skeletal/physiology , Regeneration/physiology , Signal Transduction/physiology , Stem Cells/physiology , Wnt Proteins/metabolism , Animals , Cell Lineage , Cells, Cultured , Drosophila Proteins/genetics , Drosophila Proteins/metabolism , Humans , Intracellular Signaling Peptides and Proteins/genetics , Mice , Mice, Knockout , Muscle, Skeletal/cytology , Neoplasm Proteins/genetics , Neoplasm Proteins/metabolism , RNA Interference , Stem Cells/cytology , Transcription Factors , Wnt Proteins/genetics , beta Catenin/genetics , beta Catenin/metabolism
16.
Nat Med ; 15(1): 68-74, 2009 Jan.
Article in English | MEDLINE | ID: mdl-19122658

ABSTRACT

To better understand the relationship between tumor-host interactions and the efficacy of chemotherapy, we have developed an analytical approach to quantify several biological processes observed in gene expression data sets. We tested the approach on tumor biopsies from individuals with estrogen receptor-negative breast cancer treated with chemotherapy. We report that increased stromal gene expression predicts resistance to preoperative chemotherapy with 5-fluorouracil, epirubicin and cyclophosphamide (FEC) in subjects in the EORTC 10994/BIG 00-01 trial. The predictive value of the stromal signature was successfully validated in two independent cohorts of subjects who received chemotherapy but not in an untreated control group, indicating that the signature is predictive rather than prognostic. The genes in the signature are expressed in reactive stroma, according to reanalysis of data from microdissected breast tumor samples. These findings identify a previously undescribed resistance mechanism to FEC treatment and suggest that antistromal agents may offer new ways to overcome resistance to chemotherapy.


Subject(s)
Breast Neoplasms/diagnosis , Breast Neoplasms/drug therapy , Drug Resistance, Neoplasm/genetics , Gene Expression Profiling , Stromal Cells , Algorithms , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Female , Gene Expression Regulation, Neoplastic , Humans , Neoadjuvant Therapy , Oligonucleotide Array Sequence Analysis , Oncogenes/physiology , Predictive Value of Tests , Prognosis , Stromal Cells/metabolism , Stromal Cells/pathology
17.
J Immunol ; 178(11): 6746-51, 2007 Jun 01.
Article in English | MEDLINE | ID: mdl-17513721

ABSTRACT

The mammalian ortholog of the conserved Drosophila adaptor protein Numb (Nb) and its homolog Numblike (Nbl) modulate neuronal cell fate determination at least in part by antagonizing Notch signaling. Because the Notch pathway has been implicated in regulating hemopoietic stem cell self-renewal and T cell fate specification in mammals, we investigated the role of Nb and Nbl in hemopoiesis using conditional gene targeting. Surprisingly simultaneous deletion of both Nb and Nbl in murine bone marrow precursors did not affect the ability of stem cells to self-renew or to give rise to differentiated myeloid or lymphoid progeny, even under competitive conditions in mixed chimeras. Furthermore, T cell fate specification and intrathymic T cell development were unaffected in the combined absence of Nb and Nbl. Collectively our data indicate that the Nb family of adaptor proteins is dispensable for hemopoiesis and lymphopoiesis in mice, despite their proposed role in neuronal stem cell development.


Subject(s)
Hematopoiesis/immunology , Lymphopoiesis/immunology , Membrane Proteins/deficiency , Membrane Proteins/genetics , Nerve Tissue Proteins/deficiency , Nerve Tissue Proteins/genetics , Animals , Bone Marrow Cells/cytology , Bone Marrow Cells/metabolism , Cell Differentiation/genetics , Cell Differentiation/immunology , Cell Lineage/genetics , Cell Lineage/immunology , Hematopoiesis/genetics , Hematopoietic Stem Cells/cytology , Hematopoietic Stem Cells/metabolism , Intracellular Signaling Peptides and Proteins , Lymphopoiesis/genetics , Membrane Proteins/biosynthesis , Mice , Mice, Inbred C57BL , Mice, Knockout , Mice, Transgenic , Nerve Tissue Proteins/biosynthesis , Neurons/cytology , Neurons/metabolism , Thymus Gland/cytology , Thymus Gland/metabolism
18.
Dev Dyn ; 236(2): 606-12, 2007 Feb.
Article in English | MEDLINE | ID: mdl-17195180

ABSTRACT

Spatial-temporal regulation of bone morphogenetic protein (BMP) and Wnt activity is essential for normal cardiovascular development, and altered activity of these growth factors causes maldevelopment of the cardiac outflow tract and great arteries. In the present study, we show that SOST, a Dan family member reported to antagonize BMP and Wnt activity, is expressed within the medial vessel wall of the great arteries containing smooth muscle cells. The ascending aorta, aortic arch, brachiocephalic artery, common carotids, and pulmonary trunk were all associated with SOST expressing smooth muscle cells, while the heart itself, including the valves, and more distal arteries, that is, pulmonary arteries, subclavian arteries, and descending aorta, were negative. SOST was expressed from embryonic day 15.5 up to the neonatal period. SOST expression, however, did not correspond with inhibition of Smad-dependent BMP activity or beta-catenin-dependent Wnt activity in the great arteries. Activity of both signaling pathways was already down-regulated before induction of SOST expression.


Subject(s)
Arteries/metabolism , Bone Morphogenetic Proteins/metabolism , Cardiovascular System/embryology , Cardiovascular System/growth & development , Gene Expression Regulation, Developmental , Muscle, Smooth/metabolism , Signal Transduction/genetics , Adaptor Proteins, Signal Transducing , Animals , Cardiovascular System/metabolism , Genetic Markers , Glycoproteins , In Situ Hybridization , Intercellular Signaling Peptides and Proteins , Mice , Wnt Proteins/metabolism
19.
Dev Biol ; 290(1): 66-80, 2006 Feb 01.
Article in English | MEDLINE | ID: mdl-16360140

ABSTRACT

Notch pathway is crucial for stem/progenitor cell maintenance, growth and differentiation in a variety of tissues. Using a transgenic cell ablation approach, we found in our previous study that cells expressing Notch1 are crucial for prostate early development and re-growth. Here, we further define the role of Notch signaling in regulating prostatic epithelial cell growth and differentiation using biochemical and genetic approaches in ex vivo or in vivo systems. Treatment of developing prostate grown in culture with inhibitors of gamma-secretase/presenilin, which is required for Notch cleavage and activation, caused a robust increase in proliferation of epithelial cells co-expressing cytokeratin 8 and 14, lack of luminal/basal layer segregation and dramatically reduced branching morphogenesis. Using conditional Notch1 gene deletion mouse models, we found that inactivation of Notch1 signaling resulted in profound prostatic alterations, including increased tufting, bridging and enhanced epithelial proliferation. Cells within these lesions co-expressed both luminal and basal cell markers, a feature of prostatic epithelial cells in predifferentiation developmental stages. Microarray analysis revealed that the gene expression in a number of genetic networks was altered following Notch1 gene deletion in prostate. Furthermore, expression of Notch1 and its effector Hey-1 gene in human prostate adenocarcinomas were found significantly down-regulated compared to normal control tissues. Taken together, these data suggest that Notch signaling is critical for normal cell proliferation and differentiation in the prostate, and deregulation of this pathway may facilitate prostatic tumorigenesis.


Subject(s)
Cell Differentiation , Cell Proliferation , Epithelial Cells/metabolism , Prostate/metabolism , Receptor, Notch1/metabolism , Stem Cells/metabolism , Amyloid Precursor Protein Secretases , Animals , Animals, Newborn , Aspartic Acid Endopeptidases , Basic Helix-Loop-Helix Transcription Factors/metabolism , Cell Cycle Proteins/metabolism , Cell Transformation, Neoplastic , Cells, Cultured , Down-Regulation , Endopeptidases/metabolism , Epithelial Cells/cytology , Humans , Keratins/metabolism , Male , Mice , Mice, Knockout , Morphogenesis , Oligonucleotide Array Sequence Analysis , Prostate/growth & development , Protease Inhibitors/pharmacology , Receptor, Notch1/genetics , Stem Cells/cytology
20.
J Cell Biol ; 158(4): 709-18, 2002 Aug 19.
Article in English | MEDLINE | ID: mdl-12186854

ABSTRACT

We have selectively inhibited Notch1 signaling in oligodendrocyte precursors (OPCs) using the Cre/loxP system in transgenic mice to investigate the role of Notch1 in oligodendrocyte (OL) development and differentiation. Early development of OPCs appeared normal in the spinal cord. However, at embryonic day 17.5, premature OL differentiation was observed and ectopic immature OLs were present in the gray matter. At birth, OL apoptosis was strongly increased in Notch1 mutant animals. Premature OL differentiation was also observed in the cerebrum, indicating that Notch1 is required for the correct spatial and temporal regulation of OL differentiation in various regions of the central nervous system. These findings establish a widespread function of Notch1 in the late steps of mammalian OPC development in vivo.


Subject(s)
Apoptosis/physiology , Cell Differentiation/physiology , Membrane Proteins/physiology , Oligodendroglia/physiology , Receptors, Cell Surface , Spinal Cord/physiology , Transcription Factors , Animals , Membrane Proteins/genetics , Mice , Mice, Transgenic , Mutation , Prosencephalon/physiology , Receptor, Notch1 , Spinal Cord/cytology
SELECTION OF CITATIONS
SEARCH DETAIL