Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Plants (Basel) ; 13(11)2024 May 23.
Article in English | MEDLINE | ID: mdl-38891252

ABSTRACT

Pollination in angiosperms depends on complex communication between pollen grains and stigmas, classified as wet or dry, depending on the presence or absence of secretions at the stigma surface, respectively. In species with wet stigma, the cuticle is disrupted and the presence of exudates is indicative of their receptivity. Most stigma studies are focused on a few species and families, many of them with self-incompatibility systems. However, there is scarce knowledge about the stigma composition in Fabaceae, the third angiosperm family, whose stigmas have been classified as semidry. Here we report the first transcriptome profiling and DEGs of Vicia faba L. styles and stigmas from autofertile (flowers able to self-fertilize in the absence of manipulation, whose exudate is released spontaneously) and autosterile (flowers that need to be manipulated to break the cuticle and release the exudates to be receptive) inbred lines. From the 76,269 contigs obtained from the de novo assembly, only 45.1% of the sequences were annotated with at least one GO term. A total of 115,920, 75,489, and 70,801 annotations were assigned to Biological Process (BP), Cellular Component (CC), and Molecular Function (MF) categories, respectively, and 5918 differentially expressed genes (DEGs) were identified between the autofertile and the autosterile lines. Among the most enriched metabolic pathways in the DEGs subset were those related with amino acid biosynthesis, terpenoid metabolism, or signal transduction. Some DEGs have been related with previous QTLs identified for autofertility traits, and their putative functions are discussed. The results derived from this work provide an important transcriptomic reference for style-stigma processes to aid our understanding of the molecular mechanisms involved in faba bean fertilization.

2.
BMC Plant Biol ; 22(1): 175, 2022 Apr 06.
Article in English | MEDLINE | ID: mdl-35387612

ABSTRACT

Autofertility describes the ability of faba bean flowers to self-fertilize thereby ensuring the productivity of this crop in the absence of pollinators or mechanical disturbance. In the legume crop faba bean (Vicia faba L.), lack of autofertility in a context of insufficient pollination can lead to a severe decrease in grain yield. Here we performed the first QTL analysis aimed at identifying the genomic regions controlling autofertility in this crop. We combined pod and seed setting scores from a recombinant inbred population (RIL) segregating for autofertility in different environments and years with measurements of morphological floral traits and pollen production and viability. This approach revealed 19 QTLs co-localizing in six genomic regions. Extensive co-localization was evident for various floral features whose QTLs clustered in chrs. I, II and V, while other QTLs in chrs. III, IV and VI revealed co-localization of flower characteristics and pod and seed set data. The percentage of phenotypic variation explained by the QTLs ranged from 8.9 for style length to 25.7 for stigma angle. In the three QTLs explaining the highest phenotypic variation (R 2 > 20), the marker alleles derived from the autofertile line Vf27. We further inspected positional candidates identified by these QTLs which represent a valuable resource for further validation. Our results advance the understanding of autofertility in faba bean and will aid the identification of responsible genes for genomic-assisted breeding in this crop.


Subject(s)
Vicia faba , Chromosome Mapping , Phenotype , Plant Breeding , Quantitative Trait Loci/genetics , Vicia faba/genetics
3.
Sci Rep ; 11(1): 13716, 2021 07 02.
Article in English | MEDLINE | ID: mdl-34215783

ABSTRACT

Flowering time marks the transition from vegetative to reproductive growth and is key for optimal yield in any crop. The molecular mechanisms controlling this trait have been extensively studied in model plants such as Arabidopsis thaliana and rice. While knowledge on the molecular regulation of this trait is rapidly increasing in sequenced galegoid legume crops, understanding in faba bean remains limited. Here we exploited translational genomics from model legume crops to identify and fine map QTLs linked to flowering time in faba bean. Among the 31 candidate genes relevant for flowering control in A. thaliana and Cicer arietinum assayed, 25 could be mapped in a segregating faba bean RIL population. While most of the genes showed conserved synteny among related legume species, none of them co-localized with the 9 significant QTL regions identified. The FT gene, previously implicated in the control of flowering time in numerous members of the temperate legume clade, mapped close to the most relevant stable and conserved QTL in chromosome V. Interestingly, QTL analysis suggests an important role of epigenetic modifications in faba bean flowering control. The new QTLs and candidate genes assayed here provide a robust framework for further genetic studies and will contribute to the elucidation of the molecular mechanisms controlling this trait.


Subject(s)
Chromosome Mapping , Flowers/genetics , Quantitative Trait Loci , Vicia faba/genetics , Flowers/growth & development , Phenotype
4.
Sci Rep ; 10(1): 17678, 2020 10 19.
Article in English | MEDLINE | ID: mdl-33077797

ABSTRACT

Pod dehiscence causes important yield losses in cultivated crops and therefore has been a key trait strongly selected against in crop domestication. In spite of the growing knowledge on the genetic basis of dehiscence in different crops, no information is available so far for faba bean. Here we conduct the first comprehensive study for faba bean pod dehiscence by combining, linkage mapping, comparative genomics, QTL analysis and histological examination of mature pods. Mapping of dehiscence-related genes revealed conservation of syntenic blocks among different legumes. Three QTLs were identified in faba bean chromosomes II, IV and VI, although none of them was stable across years. Histological analysis supports the convergent phenotypic evolution previously reported in cereals and related legume species but revealed a more complex pattern in faba bean. Contrary to common bean and soybean, the faba bean dehiscence zone appears to show functional equivalence to that described in crucifers. The lignified wall fiber layer, which is absent in the paucijuga primitive line Vf27, or less lignified and vacuolated in other dehiscent lines, appears to act as the major force triggering pod dehiscence in this species. While our findings, provide new insight into the mechanisms underlying faba bean dehiscence, full understanding of the molecular bases will require further studies combining precise phenotyping with genomic analysis.


Subject(s)
Crops, Agricultural/physiology , Genes, Plant , Vicia faba/physiology , Chromosomes, Plant , Crops, Agricultural/genetics , Quantitative Trait Loci , Vicia faba/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...