Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 29
Filter
1.
Alzheimers Dement ; 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38934107

ABSTRACT

INTRODUCTION: Impaired brain protein synthesis, synaptic plasticity, and memory are major hallmarks of Alzheimer's disease (AD). The ketamine metabolite (2R,6R)-hydroxynorketamine (HNK) has been shown to modulate protein synthesis, but its effects on memory in AD models remain elusive. METHODS: We investigated the effects of HNK on hippocampal protein synthesis, long-term potentiation (LTP), and memory in AD mouse models. RESULTS: HNK activated extracellular signal-regulated kinase 1/2 (ERK1/2), mechanistic target of rapamycin (mTOR), and p70S6 kinase 1 (S6K1)/ribosomal protein S6 signaling pathways. Treatment with HNK rescued hippocampal LTP and memory deficits in amyloid-ß oligomers (AßO)-infused mice in an ERK1/2-dependent manner. Treatment with HNK further corrected aberrant transcription, LTP and memory in aged APP/PS1 mice. DISCUSSION: Our findings demonstrate that HNK induces signaling and transcriptional responses that correct synaptic and memory deficits in AD mice. These results raise the prospect that HNK could serve as a therapeutic approach in AD. HIGHLIGHTS: The ketamine metabolite HNK activates hippocampal ERK/mTOR/S6 signaling pathways. HNK corrects hippocampal synaptic and memory defects in two mouse models of AD. Rescue of synaptic and memory impairments by HNK depends on ERK signaling. HNK corrects aberrant transcriptional signatures in APP/PS1 mice.

2.
Trends Neurosci ; 47(3): 195-208, 2024 03.
Article in English | MEDLINE | ID: mdl-38220554

ABSTRACT

Over the past six decades, the use of ketamine has evolved from an anesthetic and recreational drug to the first non-monoaminergic antidepressant approved for treatment-resistant major depressive disorder (MDD). Subanesthetic doses of ketamine and its enantiomer (S)-ketamine (esketamine) directly bind to several neurotransmitter receptors [including N-methyl-d-aspartic acid receptor (NMDAR), κ and µ opioid receptor (KOR and MOR)] widely distributed in the brain and across different cell types, implicating several potential molecular mechanisms underlying the action of ketamine as an antidepressant. This review examines preclinical studies investigating cell-type-specific mechanisms underlying the effects of ketamine on behavior and synapses. Cell-type-specific approaches are crucial for disentangling the critical mechanisms involved in the therapeutic effect of ketamine.


Subject(s)
Depressive Disorder, Major , Ketamine , Humans , Ketamine/pharmacology , Ketamine/therapeutic use , Depressive Disorder, Major/drug therapy , Antidepressive Agents/pharmacology , Antidepressive Agents/therapeutic use , Depression/drug therapy , Brain/metabolism , Receptors, N-Methyl-D-Aspartate
3.
J Neurosci ; 43(45): 7472-7482, 2023 11 08.
Article in English | MEDLINE | ID: mdl-37940583

ABSTRACT

Serotonergic psychedelics, such as psilocybin and LSD, have garnered significant attention in recent years for their potential therapeutic effects and unique mechanisms of action. These compounds exert their primary effects through activating serotonin 5-HT2A receptors, found predominantly in cortical regions. By interacting with these receptors, serotonergic psychedelics induce alterations in perception, cognition, and emotions, leading to the characteristic psychedelic experience. One of the most crucial aspects of serotonergic psychedelics is their ability to promote neuroplasticity, the formation of new neural connections, and rewire neuronal networks. This neuroplasticity is believed to underlie their therapeutic potential for various mental health conditions, including depression, anxiety, and substance use disorders. In this mini-review, we will discuss how the 5-HT2A receptor activation is just one facet of the complex mechanisms of action of serotonergic psychedelics. They also interact with other serotonin receptor subtypes, such as 5-HT1A and 5-HT2C receptors, and with neurotrophin receptors (e.g., tropomyosin receptor kinase B). These interactions contribute to the complexity of their effects on perception, mood, and cognition. Moreover, as psychedelic research advances, there is an increasing interest in developing nonhallucinogenic derivatives of these drugs to create safer and more targeted medications for psychiatric disorders by removing the hallucinogenic properties while retaining the potential therapeutic benefits. These nonhallucinogenic derivatives would offer patients therapeutic advantages without the intense psychedelic experience, potentially reducing the risks of adverse reactions. Finally, we discuss the potential of psychedelics as substrates for post-translational modification of proteins as part of their mechanism of action.


Subject(s)
Hallucinogens , Humans , Hallucinogens/pharmacology , Serotonin , Receptor, Serotonin, 5-HT2A , Psilocybin , Anxiety
4.
Cell Rep ; 42(3): 112203, 2023 03 28.
Article in English | MEDLINE | ID: mdl-36884348

ABSTRACT

Hallucinations limit widespread therapeutic use of psychedelics as rapidly acting antidepressants. Here we profiled the non-hallucinogenic lysergic acid diethylamide (LSD) analog 2-bromo-LSD (2-Br-LSD) at more than 33 aminergic G protein-coupled receptors (GPCRs). 2-Br-LSD shows partial agonism at several aminergic GPCRs, including 5-HT2A, and does not induce the head-twitch response (HTR) in mice, supporting its classification as a non-hallucinogenic 5-HT2A partial agonist. Unlike LSD, 2-Br-LSD lacks 5-HT2B agonism, an effect linked to cardiac valvulopathy. Additionally, 2-Br-LSD produces weak 5-HT2A ß-arrestin recruitment and internalization in vitro and does not induce tolerance in vivo after repeated administration. 2-Br-LSD induces dendritogenesis and spinogenesis in cultured rat cortical neurons and increases active coping behavior in mice, an effect blocked by the 5-HT2A-selective antagonist volinanserin (M100907). 2-Br-LSD also reverses the behavioral effects of chronic stress. Overall, 2-Br-LSD has an improved pharmacological profile compared with LSD and may have profound therapeutic value for mood disorders and other indications.


Subject(s)
Hallucinogens , Lysergic Acid Diethylamide , Rats , Mice , Animals , Lysergic Acid Diethylamide/pharmacology , Lysergic Acid Diethylamide/therapeutic use , Serotonin , Hallucinogens/pharmacology , Hallucinogens/therapeutic use , Piperidines/pharmacology
5.
Mol Brain ; 16(1): 9, 2023 01 18.
Article in English | MEDLINE | ID: mdl-36650535

ABSTRACT

The consolidation of learned information into long-lasting memories requires the strengthening of synaptic connections through de novo protein synthesis. Translation initiation factors play a cardinal role in gating the production of new proteins thereby regulating memory formation. Both positive and negative regulators of translation play a critical role in learning and memory consolidation. The eukaryotic initiation factor 4E (eIF4E) homologous protein (4EHP, encoded by the gene Eif4e2) is a pivotal negative regulator of translation but its role in learning and memory is unknown. To address this gap in knowledge, we generated excitatory (glutamatergic: CaMKIIα-positive) and inhibitory (GABAergic: GAD65-positive) conditional knockout mice for 4EHP, which were analyzed in various behavioral memory tasks. Knockout of 4EHP in Camk2a-expressing neurons (4EHP-cKOexc) did not impact long-term memory in either contextual fear conditioning or Morris water maze tasks. Similarly, long-term contextual fear memory was not altered in Gad2-directed 4EHP knockout mice (4EHP-cKOinh). However, when subjected to a short-term T-maze working memory task, both mouse models exhibited impaired cognition. We therefore tested the hypothesis that de novo protein synthesis plays a direct role in working memory. We discovered that phosphorylation of ribosomal protein S6, a measure of mTORC1 activity, is dramatically reduced in the CA1 hippocampus of 4EHP-cKOexc mice. Consistently, genetic reduction of mTORC1 activity in either excitatory or inhibitory neurons was sufficient to impair working memory. Taken together, these findings indicate that translational control by 4EHP and mTORC1 in both excitatory and inhibitory neurons are necessary for working memory.


Subject(s)
Eukaryotic Initiation Factor-4E , Learning , Memory, Short-Term , Animals , Mice , Mechanistic Target of Rapamycin Complex 1/metabolism , Mice, Knockout , RNA Cap-Binding Proteins/metabolism , Eukaryotic Initiation Factor-4E/metabolism
6.
J Neurochem ; 166(1): 10-23, 2023 Jul.
Article in English | MEDLINE | ID: mdl-35680556

ABSTRACT

Ketamine has shown antidepressant effects in patients with major depressive disorder (MDD) resistant to first-line treatments and approved for use in this patient population. Ketamine induces several forms of synaptic plasticity, which are proposed to underlie its antidepressant effects. However, the molecular mechanism of action directly responsible for ketamine's antidepressant effects remains under active investigation. It was recently demonstrated that the effectors of the mammalian target of rapamycin complex 1 (mTORC1) signalling pathway, namely, eukaryotic initiation factor 4E (eIF4E) binding proteins 1 and 2 (4E-BP1 and 4E-BP2), are central in mediating ketamine-induced synaptic plasticity and behavioural antidepressant-like effect. 4E-BPs are a family of messenger ribonucleic acid (mRNA) translation repressors inactivated by mTORC1. We observed that their expression in inhibitory interneurons mediates ketamine's effects in the forced swim and novelty suppressed feeding tests and the long-lasting inhibition of GABAergic neurotransmission in the hippocampus. In addition, another effector pathway that regulates translation elongation downstream of mTORC1, the eukaryotic elongation factor 2 kinase (eEF2K), has been implicated in ketamine's behavioural effects. We will discuss how ketamine's rapid antidepressant effect depends on the activation of neuronal mRNA translation through 4E-BP1/2 and eEF2K. Furthermore, given that these pathways also regulate cognitive functions, we will discuss the evidence of ketamine's effect on cognitive function in MDD. Overall, the data accrued from pre-clinical research have implicated the mRNA translation pathways in treating mood symptoms of MDD. However, it is yet unclear whether the pro-cognitive potential of subanesthetic ketamine in rodents also engages these pathways and whether such an effect is consistently observed in the treatment-resistant MDD population.


Subject(s)
Depressive Disorder, Major , Ketamine , Humans , Ketamine/pharmacology , Ketamine/therapeutic use , Depression/drug therapy , Depressive Disorder, Major/drug therapy , Antidepressive Agents/pharmacology , Antidepressive Agents/therapeutic use , Cognition , Mechanistic Target of Rapamycin Complex 1
8.
Proc Natl Acad Sci U S A ; 118(5)2021 02 02.
Article in English | MEDLINE | ID: mdl-33495318

ABSTRACT

Clinical studies have reported that the psychedelic lysergic acid diethylamide (LSD) enhances empathy and social behavior (SB) in humans, but its mechanism of action remains elusive. Using a multidisciplinary approach including in vivo electrophysiology, optogenetics, behavioral paradigms, and molecular biology, the effects of LSD on SB and glutamatergic neurotransmission in the medial prefrontal cortex (mPFC) were studied in male mice. Acute LSD (30 µg/kg) injection failed to increase SB. However, repeated LSD (30 µg/kg, once a day, for 7 days) administration promotes SB, without eliciting antidepressant/anxiolytic-like effects. Optogenetic inhibition of mPFC excitatory neurons dramatically inhibits social interaction and nullifies the prosocial effect of LSD. LSD potentiates the α-amino-3-hydroxy-5-methyl-4-isoxazole propionate (AMPA) and 5-HT2A, but not N-methyl-D-aspartate (NMDA) and 5-HT1A, synaptic responses in the mPFC and increases the phosphorylation of the serine-threonine protein kinases Akt and mTOR. In conditional knockout mice lacking Raptor (one of the structural components of the mTORC1 complex) in excitatory glutamatergic neurons (Raptorf/f:Camk2alpha-Cre), the prosocial effects of LSD and the potentiation of 5-HT2A/AMPA synaptic responses were nullified, demonstrating that LSD requires the integrity of mTORC1 in excitatory neurons to promote SB. Conversely, in knockout mice lacking Raptor in GABAergic neurons of the mPFC (Raptorf/f:Gad2-Cre), LSD promotes SB. These results indicate that LSD selectively enhances SB by potentiating mPFC excitatory transmission through 5-HT2A/AMPA receptors and mTOR signaling. The activation of 5-HT2A/AMPA/mTORC1 in the mPFC by psychedelic drugs should be explored for the treatment of mental diseases with SB impairments such as autism spectrum disorder and social anxiety disorder.


Subject(s)
Behavior, Animal/drug effects , Lysergic Acid Diethylamide/pharmacology , Mechanistic Target of Rapamycin Complex 1/metabolism , Social Behavior , Synaptic Transmission/drug effects , Animals , Avoidance Learning/drug effects , Male , Mice, Inbred C57BL , Neurons/drug effects , Neurons/metabolism , Optogenetics , Phosphorylation/drug effects , Prefrontal Cortex/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Pyramidal Cells/drug effects , Pyramidal Cells/metabolism , Receptors, AMPA/agonists , Receptors, AMPA/metabolism , Receptors, N-Methyl-D-Aspartate/agonists , Receptors, N-Methyl-D-Aspartate/metabolism , Receptors, Serotonin/metabolism , Synapses/drug effects , Synapses/metabolism , TOR Serine-Threonine Kinases/metabolism
9.
Nature ; 590(7845): 315-319, 2021 02.
Article in English | MEDLINE | ID: mdl-33328636

ABSTRACT

Effective pharmacotherapy for major depressive disorder remains a major challenge, as more than 30% of patients are resistant to the first line of treatment (selective serotonin reuptake inhibitors)1. Sub-anaesthetic doses of ketamine, a non-competitive N-methyl-D-aspartate receptor antagonist2,3, provide rapid and long-lasting antidepressant effects in these patients4-6, but the molecular mechanism of these effects remains unclear7,8. Ketamine has been proposed to exert its antidepressant effects through its metabolite (2R,6R)-hydroxynorketamine ((2R,6R)-HNK)9. The antidepressant effects of ketamine and (2R,6R)-HNK in rodents require activation of the mTORC1 kinase10,11. mTORC1 controls various neuronal functions12, particularly through cap-dependent initiation of mRNA translation via the phosphorylation and inactivation of eukaryotic initiation factor 4E-binding proteins (4E-BPs)13. Here we show that 4E-BP1 and 4E-BP2 are key effectors of the antidepressant activity of ketamine and (2R,6R)-HNK, and that ketamine-induced hippocampal synaptic plasticity depends on 4E-BP2 and, to a lesser extent, 4E-BP1. It has been hypothesized that ketamine activates mTORC1-4E-BP signalling in pyramidal excitatory cells of the cortex8,14. To test this hypothesis, we studied the behavioural response to ketamine and (2R,6R)-HNK in mice lacking 4E-BPs in either excitatory or inhibitory neurons. The antidepressant activity of the drugs is mediated by 4E-BP2 in excitatory neurons, and 4E-BP1 and 4E-BP2 in inhibitory neurons. Notably, genetic deletion of 4E-BP2 in inhibitory neurons induced a reduction in baseline immobility in the forced swim test, mimicking an antidepressant effect. Deletion of 4E-BP2 specifically in inhibitory neurons also prevented the ketamine-induced increase in hippocampal excitatory neurotransmission, and this effect concurred with the inability of ketamine to induce a long-lasting decrease in inhibitory neurotransmission. Overall, our data show that 4E-BPs are central to the antidepressant activity of ketamine.


Subject(s)
Antidepressive Agents/pharmacology , Eukaryotic Initiation Factor-4E/metabolism , Ketamine/pharmacology , Neurons/drug effects , Neurons/metabolism , Protein Biosynthesis/drug effects , Adaptor Proteins, Signal Transducing/genetics , Adaptor Proteins, Signal Transducing/metabolism , Animals , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , Depressive Disorder, Major/drug therapy , Eukaryotic Initiation Factors/genetics , Eukaryotic Initiation Factors/metabolism , Excitatory Postsynaptic Potentials/drug effects , Hippocampus/cytology , Hippocampus/drug effects , Hippocampus/metabolism , Inhibitory Postsynaptic Potentials/drug effects , Interneurons/drug effects , Interneurons/metabolism , Ketamine/analogs & derivatives , Ketamine/metabolism , Male , Mechanistic Target of Rapamycin Complex 1/metabolism , Mice , Mutation , Neural Inhibition/drug effects , Neural Inhibition/genetics , Neurons/classification , Neurons/cytology , Pyramidal Cells/drug effects , Pyramidal Cells/metabolism , Synaptic Transmission/drug effects
10.
Front Neuroendocrinol ; 60: 100897, 2021 01.
Article in English | MEDLINE | ID: mdl-33359797

ABSTRACT

Astroglial cells are the most abundant cell type in the mammalian brain. They are implicated in almost every aspect of brain physiology, including maintaining homeostasis, building and maintaining the blood brain barrier, and the development and maturation of neuronal networks. Critically, astroglia also express receptors for gonadal sex hormones, respond rapidly to gonadal hormones, and are able to synthesize hormones. Thus, they are positioned to guide and mediate sexual differentiation of the brain, particularly neuronal networks in typical and pathological conditions. In this review, we describe astroglial involvement in the organization and development of the brain, and consider known sex differences in astroglial responses to understand how astroglial cell-mediated organization may play a role in forebrain sexual dimorphisms in human populations. Finally, we consider how sexually dimorphic astroglial responses and functions in development may lead to sex differences in vulnerability for neuropsychiatric disorders.


Subject(s)
Astrocytes , Mental Disorders , Animals , Brain , Female , Humans , Male , Neurosecretory Systems , Prosencephalon , Sex Characteristics
12.
J Neurosci ; 41(5): 891-900, 2021 02 03.
Article in English | MEDLINE | ID: mdl-33257322

ABSTRACT

A revamped interest in the study of hallucinogens has recently emerged, especially with regard to their potential application in the treatment of psychiatric disorders. In the last decade, a plethora of preclinical and clinical studies have confirmed the efficacy of ketamine in the treatment of depression. More recently, emerging evidence has pointed out the potential therapeutic properties of psilocybin and LSD, as well as their ability to modulate functional brain connectivity. Moreover, MDMA, a compound belonging to the family of entactogens, has been demonstrated to be useful to treat post-traumatic stress disorders. In this review, the pharmacology of hallucinogenic compounds is summarized by underscoring the differences between psychedelic and nonpsychedelic hallucinogens as well as entactogens, and their behavioral effects in both animals and humans are described. Together, these data substantiate the potentials of these compounds in treating mental diseases.


Subject(s)
Hallucinogens/administration & dosage , Ketamine/administration & dosage , Lysergic Acid Diethylamide/administration & dosage , Mental Disorders/drug therapy , N-Methyl-3,4-methylenedioxyamphetamine/administration & dosage , Psilocybin/administration & dosage , Animals , Brain/drug effects , Brain/metabolism , Humans , Mental Disorders/metabolism , Mental Disorders/psychology , Mental Health/trends , Randomized Controlled Trials as Topic/methods
13.
Mol Autism ; 11(1): 92, 2020 11 23.
Article in English | MEDLINE | ID: mdl-33225984

ABSTRACT

BACKGROUND: The regulation of protein synthesis is a critical step in gene expression, and its dysfunction is implicated in autism spectrum disorder (ASD). The eIF4E homologous protein (4EHP, also termed eIF4E2) binds to the mRNA 5' cap to repress translation. The stability of 4EHP is maintained through physical interaction with GRB10 interacting GYF protein 2 (GIGYF2). Gene-disruptive mutations in GIGYF2 are linked to ASD, but causality is lacking. We hypothesized that GIGYF2 mutations cause ASD by disrupting 4EHP function. METHODS: Since homozygous deletion of either gene is lethal, we generated a cell-type-specific knockout model where Eif4e2 (the gene encoding 4EHP) is deleted in excitatory neurons of the forebrain (4EHP-eKO). In this model, we investigated ASD-associated synaptic plasticity dysfunction, ASD-like behaviors, and global translational control. We also utilized mice lacking one copy of Gigyf2, Eif4e2 or co-deletion of one copy of each gene to further investigate ASD-like behaviors. RESULTS: 4EHP is expressed in excitatory neurons and synaptosomes, and its amount increases during development. 4EHP-eKO mice display exaggerated mGluR-LTD, a phenotype frequently observed in mouse models of ASD. Consistent with synaptic plasticity dysfunction, the mice displayed social behavior impairments without being confounded by deficits in olfaction, anxiety, locomotion, or motor ability. Repetitive behaviors and vocal communication were not affected by loss of 4EHP in excitatory neurons. Heterozygous deletion of either Gigyf2, Eif4e2, or both genes in mice did not result in ASD-like behaviors (i.e. decreases in social behavior or increases in marble burying). Interestingly, exaggerated mGluR-LTD and impaired social behaviors were not attributed to changes in hippocampal global protein synthesis, which suggests that 4EHP and GIGYF2 regulate the translation of specific mRNAs to mediate these effects. LIMITATIONS: This study did not identify which genes are translationally regulated by 4EHP and GIGYF2. Identification of mistranslated genes in 4EHP-eKO mice might provide a mechanistic explanation for the observed impairment in social behavior and exaggerated LTD. Future experiments employing affinity purification of translating ribosomes and mRNA sequencing in 4EHP-eKO mice will address this relevant issue. CONCLUSIONS: Together these results demonstrate an important role of 4EHP in regulating hippocampal plasticity and ASD-associated social behaviors, consistent with the link between mutations in GIGYF2 and ASD.


Subject(s)
Eukaryotic Initiation Factor-4E/metabolism , Hippocampus/physiopathology , Long-Term Synaptic Depression/physiology , Social Behavior , Animals , Anxiety/physiopathology , Autism Spectrum Disorder/genetics , Behavior, Animal , Carrier Proteins/genetics , Heterozygote , Hippocampus/pathology , Male , Mice, Inbred C57BL , Mice, Knockout , Models, Biological , Motor Activity , Mutation/genetics , Neurons/metabolism , RNA Caps/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Receptors, Metabotropic Glutamate/metabolism , Smell , Social Interaction , Synaptosomes/metabolism
14.
Front Psychiatry ; 11: 852, 2020.
Article in English | MEDLINE | ID: mdl-33061910

ABSTRACT

Prenatal infections have been linked to the development of schizophrenia (SCZ) and other neurodevelopmental disorders in the offspring, and work in animal models indicates that this is to occur through the maternal inflammatory response triggered by infection. Several studies in animal models demonstrated that acute inflammatory episodes are sufficient to trigger brain alterations in the adult offspring, especially in the mesolimbic dopamine (DA) system, involved in the pathophysiology of SCZ and other disorders involving psychosis. In the current review, we synthesize the literature on the clinical studies implicating prenatal infectious events in the development of SCZ. Then, we summarize evidence from animal models of maternal immune activation (MIA) and the behavioral and molecular alterations relevant for the function of the DAergic system. Furthermore, we discuss the evidence supporting the involvement of maternal cytokines, such as interleukin 6 (IL-6) and leptin (a hormone with effects on inflammation) in mediating the effects of MIA on the fetal brain, leading to the long-lasting effects on the offspring. In particular, IL-6 has been involved in mediating the effects of MIA animal models in the offspring through actions on the placenta, induction of IL-17a, or triggering the decrease in non-heme iron (hypoferremia). Maternal infection is very likely interacting with additional genetic and environmental risk factors in the development of SCZ; systematically investigating how these interactions produce specific phenotypes is the next step in understanding the etiology of complex psychiatric disorders.

15.
Nat Neurosci ; 23(12): 1456-1468, 2020 12.
Article in English | MEDLINE | ID: mdl-32839617

ABSTRACT

To understand the function of cortical circuits, it is necessary to catalog their cellular diversity. Past attempts to do so using anatomical, physiological or molecular features of cortical cells have not resulted in a unified taxonomy of neuronal or glial cell types, partly due to limited data. Single-cell transcriptomics is enabling, for the first time, systematic high-throughput measurements of cortical cells and generation of datasets that hold the promise of being complete, accurate and permanent. Statistical analyses of these data reveal clusters that often correspond to cell types previously defined by morphological or physiological criteria and that appear conserved across cortical areas and species. To capitalize on these new methods, we propose the adoption of a transcriptome-based taxonomy of cell types for mammalian neocortex. This classification should be hierarchical and use a standardized nomenclature. It should be based on a probabilistic definition of a cell type and incorporate data from different approaches, developmental stages and species. A community-based classification and data aggregation model, such as a knowledge graph, could provide a common foundation for the study of cortical circuits. This community-based classification, nomenclature and data aggregation could serve as an example for cell type atlases in other parts of the body.


Subject(s)
Cells/classification , Neocortex/cytology , Transcriptome , Animals , Computational Biology , Humans , Neuroglia/classification , Neurons/classification , Single-Cell Analysis , Terminology as Topic
16.
Mol Autism ; 11(1): 29, 2020 05 06.
Article in English | MEDLINE | ID: mdl-32375878

ABSTRACT

BACKGROUND: Mutations in TSC1 or TSC2 genes cause tuberous sclerosis complex (TSC), a disorder associated with epilepsy, autism, and intellectual disability. TSC1 and TSC2 are repressors of the mechanistic target of rapamycin complex 1 (mTORC1), a key regulator of protein synthesis. Dysregulation of mTORC1 in TSC mouse models leads to impairments in excitation-inhibition balance, synaptic plasticity, and hippocampus-dependent learning and memory deficits. However, synaptic inhibition arises from multiple types of inhibitory interneurons and how changes in specific interneurons contribute to TSC remains largely unknown. In the present work, we determined the effect of conditional Tsc1 haploinsufficiency in a specific subgroup of inhibitory cells on hippocampal function in mice. METHODS: We investigated the consequences of conditional heterozygous knockout of Tsc1 in MGE-derived inhibitory cells by crossing Nkx2.1Cre/wt;Tsc1f/f mice. We examined the changes in mTORC1 activity and synaptic transmission in hippocampal cells, as well as hippocampus-related cognitive tasks. RESULTS: We detected selective increases in phosphorylation of ribosomal protein S6 in interneurons, indicating cell-specific-upregulated mTORC1 signaling. At the behavioral level, Nkx2.1Cre/wt;Tsc1f/wt mice exhibited intact contextual fear memory, but impaired contextual fear discrimination. They displayed intact spatial learning and reference memory but impairment in spatial working memory. Whole-cell recordings in hippocampal slices of Nkx2.1Cre/wt;Tsc1f/wt mice showed intact basic membrane properties, as well as miniature excitatory and inhibitory synaptic transmission, in pyramidal and Nkx2.1-expressing inhibitory cells. Using optogenetic activation of Nkx2.1 interneurons in slices of Nkx2.1Cre/wt;Tsc1f/wt mice, we found a decrease in synaptic inhibition of pyramidal cells. Chronic, but not acute treatment, with the mTORC1 inhibitor rapamycin reversed the impairment in synaptic inhibition. CONCLUSIONS: Our results indicate that Tsc1 haploinsufficiency in MGE-derived inhibitory cells upregulates mTORC1 activity in these interneurons, reduces their synaptic inhibition of pyramidal cells, and alters contextual fear discrimination and spatial working memory. Thus, selective dysregulation of mTORC1 function in Nkx2.1-expressing inhibitory cells appears sufficient to impair synaptic inhibition and contributes to cognitive deficits in the Tsc1 mouse model of TSC.


Subject(s)
Fear , Haploinsufficiency , Mechanistic Target of Rapamycin Complex 1/metabolism , Memory, Short-Term , Pyramidal Cells/metabolism , Synaptic Transmission/genetics , Thyroid Nuclear Factor 1/genetics , Tuberous Sclerosis Complex 1 Protein/genetics , Animals , Biomarkers , Disease Models, Animal , Disease Susceptibility , Fluorescent Antibody Technique , Heterozygote , Interneurons , Male , Mice , Mice, Knockout , Thyroid Nuclear Factor 1/metabolism
17.
Nat Commun ; 9(1): 2459, 2018 06 25.
Article in English | MEDLINE | ID: mdl-29941989

ABSTRACT

Translation of mRNA into protein has a fundamental role in neurodevelopment, plasticity, and memory formation; however, its contribution in the pathophysiology of depressive disorders is not fully understood. We investigated the involvement of MNK1/2 (MAPK-interacting serine/threonine-protein kinase 1 and 2) and their target, eIF4E (eukaryotic initiation factor 4E), in depression-like behavior in mice. Mice carrying a mutation in eIF4E for the MNK1/2 phosphorylation site (Ser209Ala, Eif4e ki/ki), the Mnk1/2 double knockout mice (Mnk1/2-/-), or mice treated with the MNK1/2 inhibitor, cercosporamide, displayed anxiety- and depression-like behaviors, impaired serotonin-induced excitatory synaptic activity in the prefrontal cortex, and diminished firing of the dorsal raphe neurons. In Eif4e ki/ki mice, brain IκBα, was decreased, while the NF-κB target, TNFα was elevated. TNFα inhibition in Eif4e ki/ki mice rescued, whereas TNFα administration to wild-type mice mimicked the depression-like behaviors and 5-HT synaptic deficits. We conclude that eIF4E phosphorylation modulates depression-like behavior through regulation of inflammatory responses.


Subject(s)
Anxiety/pathology , Depression/pathology , Eukaryotic Initiation Factor-4E/metabolism , Protein Biosynthesis/physiology , Protein Serine-Threonine Kinases/genetics , Animals , Antidepressive Agents/pharmacology , Anxiety/chemically induced , Anxiety/genetics , Behavior, Animal/physiology , Benzofurans/pharmacology , Citalopram/pharmacology , Depression/chemically induced , Depression/genetics , Depressive Disorder, Major/pathology , Female , Fluoxetine/pharmacology , Inflammation/pathology , Ketamine/pharmacology , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , NF-KappaB Inhibitor alpha/metabolism , Phosphorylation , Protein Serine-Threonine Kinases/antagonists & inhibitors , Serotonin and Noradrenaline Reuptake Inhibitors/pharmacology , Synaptic Transmission/physiology , Tumor Necrosis Factor-alpha/metabolism
18.
Nat Med ; 23(6): 674-677, 2017 Jun.
Article in English | MEDLINE | ID: mdl-28504725

ABSTRACT

Fragile X syndrome (FXS) is the leading monogenic cause of autism spectrum disorders (ASD). Trinucleotide repeat expansions in FMR1 abolish FMRP expression, leading to hyperactivation of ERK and mTOR signaling upstream of mRNA translation. Here we show that metformin, the most widely used drug for type 2 diabetes, rescues core phenotypes in Fmr1-/y mice and selectively normalizes ERK signaling, eIF4E phosphorylation and the expression of MMP-9. Thus, metformin is a potential FXS therapeutic.


Subject(s)
Behavior, Animal/drug effects , Eukaryotic Initiation Factor-4E/drug effects , Fragile X Mental Retardation Protein/genetics , Fragile X Syndrome/genetics , Hypoglycemic Agents/pharmacology , MAP Kinase Signaling System/drug effects , Matrix Metalloproteinase 9/drug effects , Metformin/pharmacology , Social Behavior , Animals , Disease Models, Animal , Eukaryotic Initiation Factor-4E/metabolism , Fragile X Syndrome/metabolism , Fragile X Syndrome/physiopathology , Male , Matrix Metalloproteinase 9/metabolism , Mice , Mice, Knockout , Phosphorylation/drug effects , RNA, Messenger/drug effects , RNA, Messenger/metabolism , Trinucleotide Repeat Expansion
19.
J Neurosci ; 35(31): 11125-32, 2015 Aug 05.
Article in English | MEDLINE | ID: mdl-26245973

ABSTRACT

Exacerbated mRNA translation during brain development has been linked to autism spectrum disorders (ASDs). Deletion of the eukaryotic initiation factor 4E (eIF4E)-binding protein 2 gene (Eif4ebp2), encoding the suppressor of mRNA translation initiation 4E-BP2, leads to an imbalance in excitatory-to-inhibitory neurotransmission and ASD-like behaviors. Inhibition of group I metabotropic glutamate receptors (mGluRs) mGluR1 and mGluR5 reverses the autistic phenotypes in several ASD mouse models. Importantly, these receptors control synaptic physiology via activation of mRNA translation. We investigated the potential reversal of autistic-like phenotypes in Eif4ebp2(-/-) mice by using antagonists of mGluR1 (JNJ16259685) or mGluR5 (fenobam). Augmented hippocampal mGluR-induced long-term depression (LTD; or chemically induced mGluR-LTD) in Eif4ebp2(-/-) mice was rescued by mGluR1 or mGluR5 antagonists. While rescue by mGluR5 inhibition occurs through the blockade of a protein synthesis-dependent component of LTD, normalization by mGluR1 antagonists requires the activation of protein synthesis. Synaptically induced LTD was deficient in Eif4ebp2(-/-) mice, and this deficit was not rescued by group I mGluR antagonists. Furthermore, a single dose of mGluR1 (0.3 mg/kg) or mGluR5 (3 mg/kg) antagonists in vivo reversed the deficits in social interaction and repetitive behaviors (marble burying) in Eif4ebp2(-/-) mice. Our results demonstrate that Eif4ebp2(-/-) mice serve as a relevant model to test potential therapies for ASD symptoms. In addition, we provide substantive evidence that the inhibition of mGluR1/mGluR5 is an effective treatment for physiological and behavioral alterations caused by exacerbated mRNA translation initiation. SIGNIFICANCE STATEMENT: Exacerbated mRNA translation during brain development is associated with several autism spectrum disorders (ASDs). We recently demonstrated that the deletion of a negative regulator of mRNA translation initiation, the eukaryotic initiation factor 4E-binding protein 2, leads to ASD-like behaviors and increased excitatory synaptic activity. Here we demonstrated that autistic behavioral and electrophysiological phenotypes can be treated in adult mice with antagonists of group I metabotropic glutamate receptors (mGluRs), which have been previously used in other ASD models (i.e., fragile X syndrome). These findings support the use of group I mGluR antagonists as a potential therapy that extends to autism models involving exacerbated mRNA translation initiation.


Subject(s)
Behavior, Animal/drug effects , Eukaryotic Initiation Factors/metabolism , Excitatory Amino Acid Antagonists/pharmacology , Receptors, Metabotropic Glutamate/antagonists & inhibitors , Social Behavior , Animals , Autistic Disorder/psychology , Behavior, Animal/physiology , Disease Models, Animal , Eukaryotic Initiation Factors/genetics , Imidazoles/pharmacology , Long-Term Synaptic Depression/drug effects , Long-Term Synaptic Depression/physiology , Male , Mice , Mice, Knockout , Quinolines/pharmacology , Stereotyped Behavior
20.
Neuropharmacology ; 96(Pt A): 124-34, 2015 Sep.
Article in English | MEDLINE | ID: mdl-25582291

ABSTRACT

Global levels of obesity are reaching epidemic proportions, leading to a dramatic increase in incidence of secondary diseases and the significant economic burden associated with their treatment. These comorbidities include diabetes, cardiovascular disease, and some psychopathologies, which have been linked to a low-grade inflammatory state. Obese individuals exhibit an increase in circulating inflammatory mediators implicated as the underlying cause of these comorbidities. A number of these molecules are also manufactured and released by white adipose tissue (WAT), in direct proportion to tissue mass and are collectively known as adipokines. In the current review we focused on the role of two of the better-studied members of this family namely, leptin and adiponectin, with particular emphasis on their role in neuro-immune interactions, neuroinflammation and subsequent brain diseases. This article is part of a Special Issue entitled 'Neuroimmunology and Synaptic Function'.


Subject(s)
Adipokines/physiology , Encephalitis/complications , Obesity/complications , Adipokines/blood , Adipokines/immunology , Adiponectin/blood , Adiponectin/physiology , Animals , Encephalitis/immunology , Humans , Inflammation/complications , Inflammation/immunology , Leptin/physiology , Obesity/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...