Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Chem Chem Phys ; 26(13): 10021-10028, 2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38482754

ABSTRACT

cis-2-tert-Butyl-5-(tert-butylsulfonyl)-1,3-dioxane (cis-1) exhibits a high degree of eclipsing in the H-C5-S-C segment in the solid state, the origin of which remains unexplained. The eclipsed conformation that corresponds to an energetic minimum in the solid state practically corresponds to a rotational transition state in solution, which allows an approach to understand transitions states. The difference in the enthalpy of sublimation ΔsubH between cis-1 and the more stable trans-1 is 8.40 kcal mol-1, lets to consider that the intermolecular interactions in the crystalline structure must be responsible for the conformational effect observed in the solid state. The study of the experimental electron density of cis-1 in solid state allowed to establish that CH⋯OS intermolecular interaction is the main contribution to the observed eclipsing. The charge density analysis was also performed using the quantum theory of atoms in molecules to evaluate the nature and relevance of the intermolecular interactions in the crystal structure.

2.
FEBS J ; 289(9): 2685-2705, 2022 05.
Article in English | MEDLINE | ID: mdl-34767295

ABSTRACT

The opportunistic human pathogen Pseudomonas aeruginosa exhibits great resistance to antibiotics; so, new therapeutic agents are urgently needed. Since polyamines levels are incremented in infected tissues, we explored whether the formation of a toxic aldehyde in polyamines degradation can be exploited in combating infection. We cloned the gene encoding the only aminoaldehyde dehydrogenase involved in P. aeruginosa polyamines-degradation routes, PaPauC, overexpressed this enzyme, and found that it oxidizes 3-aminopropionaldehyde (APAL) and 3-glutamyl-3-aminopropionaldehyde (GluAPAL) - produced in spermine (Spm), spermidine (Spd), and diaminopropane (Dap) degradation, as well as 4-aminobutyraldehyde (ABAL) and 4-glutamyl-4-aminobutyraldehyde (GluABAL) - formed in putrescine (Put) degradation. As the catalytic efficiency of PaPauC with APAL was 30-times lower than with GluAPAL, and GluAPAL is predominantly formed, APAL will be poorly oxidized 'in vivo'. We found polyamines-induced increases in the PaPauC activity of cell crude-extracts and in the expression of the PapauC gene that were diminished by glucose. Spm, Spd, or Dap, but not Put, were toxic to P. aeruginosa even in the presence of other carbon and nitrogen sources, particularly to a strain with the PapauC gene disrupted. APAL, but not GluAPAL, was highly toxic even to wild-type cells, suggesting that its accumulation, particularly in the absence of, or low, PaPauC activity is responsible for the toxicity of Spm, Spd, and Dap. Our results shed light on the toxicity mechanism of these three polyamines and strongly support the critical role of PaPauC in this toxicity. Thus, PaPauC emerges as a novel potential drug target whose inhibition might help in combating infection by this important pathogen.


Subject(s)
Spermidine , Spermine , Aldehyde Dehydrogenase , Humans , Polyamines/metabolism , Pseudomonas aeruginosa/genetics , Pseudomonas aeruginosa/metabolism , Putrescine/pharmacology , Spermidine/pharmacology , Spermine/pharmacology
3.
Bioorg Chem ; 50: 17-25, 2013 Oct.
Article in English | MEDLINE | ID: mdl-23933402

ABSTRACT

Chromone (4), which form the base structure of various flavonoids isolated as natural products, is capable of relaxing smooth muscle. This is relevant to the treatment of high blood pressure, asthma and chronic obstructive pulmonary disease. The former disorder involves the contraction of vascular smooth muscle (VSM), and the latter two bronchoconstriction of airway smooth muscle (ASM). One of the principal mechanisms by which flavonoids relax muscle tissue is the inhibition of phosphodiesterases (PDEs), present in both VSM and ASM. Therefore, a study was designed to analyze the structure-activity relationship of chromone derivatives in vaso- and bronchorelaxation through the inhibition of PDE. Docking studies showed that these chromones bind at the catalytic site of PDEs. Consequently, we synthesized analogs of chromones substituted at position C-2 with alkyl and naphthyl groups. These compounds were synthesized from 2-hydroxyacetophenone and acyl chlorides in the presence of DBU and pyridine, modifying the methodology reported for the synthesis of 3-acylchromones by changing the reaction temperature from 80 to 30°C and using methylene chloride as solvent, yielding the corresponding phenolic esters 10a-10h. These compounds were cyclized with an equivalent of DBU, pyridine as solvent, and heated at reflux temperature, yielding the chromones 11a-11h. Evaluation of the vasorelaxant effect of 4, 11a-11h on rat aorta demonstrated that potency decreases with branched alkyl groups. Whereas the EC50 of compound 11d (substituted by an n-hexyl group) was 8.64±0.39 µM, that of 11f (substituted by an isobutyl group) was 14.58±0.64 µM. Contrarily, the effectiveness of the compound is directly proportional to the length of the alkyl chain, as evidenced by the increase in maximal effect of compound 11c versus 11d (66% versus 100%) and 11e versus 11f (60% versus 96%). With an aromatic group like naphthyl as the C-2 substituent, the effectiveness was only 43%. All compounds tested on guinea pig trachea showed less than 55% effectiveness. Compounds 4, 11a-11h were evaluated as PDE inhibitors in vitro, with 11d showing the greatest effect (73%), corroborating the importance of a long alkyl chain, which inhibits the decomposition of cGMP. Docking studies showed that the compound 11d was selective for the inhibition of PDE-5.


Subject(s)
Aorta/drug effects , Chromones/pharmacology , Enzyme Inhibitors/pharmacology , Phosphoric Diester Hydrolases/metabolism , Trachea/drug effects , Animals , Aorta/enzymology , Aorta/metabolism , Chromones/chemical synthesis , Chromones/chemistry , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/chemistry , Guinea Pigs , Models, Molecular , Molecular Structure , Rats , Trachea/enzymology , Trachea/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...