Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters











Database
Language
Publication year range
1.
Yeast ; 41(1-2): 35-51, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38054508

ABSTRACT

Yeasts are a diverse group of fungal microorganisms that are widely used to produce fermented foods and beverages. In Mexico, open fermentations are used to obtain spirits from agave plants. Despite the prevalence of this traditional practice throughout the country, yeasts have only been isolated and studied from a limited number of distilleries. To systematically describe the diversity of yeast species from open agave fermentations, here we generate the YMX-1.0 culture collection by isolating 4524 strains from 68 sites with diverse climatic, geographical, and biological contexts. We used MALDI-TOF mass spectrometry for taxonomic classification and validated a subset of the strains by ITS and D1/D2 sequencing, which also revealed two potential novel species of Saccharomycetales. Overall, the composition of yeast communities was weakly associated with local variables and types of climate, yet a core set of six species was consistently isolated from most producing regions. To explore the intraspecific variation of the yeasts from agave fermentations, we sequenced the genomes of four isolates of the nonconventional yeast Kazachstania humilis. The genomes of these four strains were substantially distinct from a European isolate of the same species, suggesting that they may belong to different populations. Our work contributes to the understanding and conservation of an open fermentation system of great cultural and economic importance, providing a valuable resource to study the biology and genetic diversity of microorganisms living at the interface of natural and human-associated environments.


Subject(s)
Agave , Humans , Fermentation , Agave/microbiology , Mexico , Yeasts , Alcoholic Beverages/microbiology
2.
Plants (Basel) ; 12(23)2023 Nov 27.
Article in English | MEDLINE | ID: mdl-38068624

ABSTRACT

Cucurbita ficifolia is a squash grown from Mexico to Bolivia. Its ancestor is unknown, but it has limited compatibility with wild xerophytic Cucurbita from Mexico's highlands. We assembled the reference genome of C. ficifolia and assessed the genetic diversity and historical demography of the crop in Mexico with 2524 nuclear single nucleotide polymorphisms (SNPs). We also evaluated the gene flow between C. ficifolia and xerophytic taxa with 6292 nuclear and 440 plastome SNPs from 142 individuals sampled in 58 sites across their area of sympatry. Demographic modelling of C. ficifolia supports an eight-fold decrease in effective population size at about 2409 generations ago (95% CI = 464-12,393), whereas plastome SNPs support the expansion of maternal lineages ca. 1906-3635 years ago. Our results suggest a recent spread of C. ficifolia in Mexico, with high genetic diversity (π = 0.225, FST = 0.074) and inbreeding (FIS = 0.233). Coalescent models suggest low rates of gene flow with C. radicans and C. pedatifolia, whereas ABBA-BABA tests did not detect significant gene flow with wild taxa. Despite the ecogeographic proximity of C. ficifolia and its relatives, this crop persists as a highly isolated lineage of puzzling origin.

3.
J Mol Evol ; 87(9-10): 327-342, 2019 12.
Article in English | MEDLINE | ID: mdl-31701178

ABSTRACT

Twenty-nine DNA regions of plastid origin have been previously identified in the mitochondrial genome of Cucurbita pepo (pumpkin; Cucurbitaceae). Four of these regions harbor homolog sequences of rbcL, matK, rpl20-rps12 and trnL-trnF, which are widely used as molecular markers for phylogenetic and phylogeographic studies. We extracted the mitochondrial copies of these regions based on the mitochondrial genome of C. pepo and, along with published sequences for these plastome markers from 13 Cucurbita taxa, we performed phylogenetic molecular analyses to identify inter-organellar transfer events in the Cucurbita phylogeny and changes in their nucleotide substitution rates. Phylogenetic reconstruction and tree selection tests suggest that rpl20 and rbcL mitochondrial paralogs arose before Cucurbita diversification whereas the mitochondrial matK and trnL-trnF paralogs emerged most probably later, in the mesophytic Cucurbita clade. Nucleotide substitution rates increased one order of magnitude in all the mitochondrial paralogs compared to their original plastid sequences. Additionally, mitochondrial trnL-trnF sequences obtained by PCR from nine Cucurbita taxa revealed higher nucleotide diversity in the mitochondrial than in the plastid copies, likely related to the higher nucleotide substitution rates in the mitochondrial region and loss of functional constraints in its tRNA genes.


Subject(s)
Cucurbita/genetics , Genome, Mitochondrial/genetics , Plastids/genetics , Biological Evolution , Evolution, Molecular , Genes, Plant/genetics , Genome, Plant/genetics , Mitochondria/genetics , Phylogeny , Sequence Analysis, DNA
4.
Am J Bot ; 105(8): 1329-1344, 2018 08.
Article in English | MEDLINE | ID: mdl-30091785

ABSTRACT

PREMISE OF THE STUDY: Pinaceae have a rich but enigmatic early fossil record, much of which is represented by permineralized seed cones. Our incomplete knowledge of morphology and anatomy in living and extinct species poses an important barrier to understanding their phylogenetic relationships and timing of diversification. METHODS: We expanded a morphology matrix to 46 fossil and 31 extant Pinaceae species, mainly adding characters from stem and leaf anatomy and seed cones. Using parsimony and Bayesian inference, we compared phylogenetic relationships for extant taxa with and without fossils from the morphology matrix combined with an alignment of plastid gene sequences. KEY RESULTS: Combined analysis of morphological and molecular characters resulted in a phylogeny of extant Pinaceae that was robust at all nodes except those relating to the interrelationships of Pinus, Picea, and Cathaya and the position of Cedrus. Simultaneous analysis of all fossil and extant species did not result in changes in the relationships among the extant species but did greatly reduce branch support. We found that the placement of most fossils was sensitive to the method of phylogenetic reconstruction when analyzing them singly with the extant species. CONCLUSIONS: A robust phylogenetic hypothesis for the main lineages of Pinaceae is emerging. Most Early Cretaceous fossils are stem or crown lineages of Pinus, but close relationships also were found between fossils and several other extant genera. The phylogenetic position of fossils broadly supports the existence of extant genera in the Lower Cretaceous.


Subject(s)
Fossils , Phylogeny , Pinaceae/genetics , Pinaceae/anatomy & histology
5.
Am J Bot ; 105(4): 711-725, 2018 04.
Article in English | MEDLINE | ID: mdl-29683492

ABSTRACT

PREMISE OF THE STUDY: Both incomplete lineage sorting and reticulation have been proposed as causes of phylogenetic incongruence. Disentangling these factors may be most difficult in long-lived, wind-pollinated plants with large population sizes and weak reproductive barriers. METHODS: We used solution hybridization for targeted enrichment and massive parallel sequencing to characterize low-copy-number nuclear genes and high-copy-number plastomes (Hyb-Seq) in 74 individuals of Pinus subsection Australes, a group of ~30 New World pine species of exceptional ecological and economic importance. We inferred relationships using methods that account for both incomplete lineage sorting and reticulation. KEY RESULTS: Concatenation- and coalescent-based trees inferred from nuclear genes mainly agreed with one another, but they contradicted the plastid DNA tree in recovering the Attenuatae (the California closed-cone pines) and Oocarpae (the egg-cone pines of Mexico and Central America) as monophyletic and the Australes sensu stricto (the southern yellow pines) as paraphyletic to the Oocarpae. The plastid tree featured some relationships that were discordant with morphological and geographic evidence and species limits. Incorporating gene flow into the coalescent analyses better fit the data, but evidence supporting the hypothesis that hybridization explains the non-monophyly of the Attenuatae in the plastid tree was equivocal. CONCLUSIONS: Our analyses document cytonuclear discordance in Pinus subsection Australes. We attribute this discordance to ancient and recent introgression and present a phylogenetic hypothesis in which mostly hierarchical relationships are overlain by gene flow.


Subject(s)
Pinus/genetics , Gene Flow , Genes, Plant/genetics , Genetic Markers/genetics , Hybridization, Genetic , Models, Genetic , Phylogeny , Pinus/classification , Sequence Alignment
6.
Mitochondrial DNA B Resour ; 2(2): 562-565, 2017 Aug 22.
Article in English | MEDLINE | ID: mdl-33473901

ABSTRACT

We assembled the plastomes of Pinus greggii, P. jaliscana and P. oocarpa from 100 bp paired-end Illumina reads. We combined de novo (comparing Velvet and SPAdes) with reference-guided assembly and a final step of gap filling. SPAdes performed better than Velvet based on scaffold number (180 vs. 263) and mean length (1886 vs. 560 bp), and number of gaps (2 vs. 4). Annotations were automatically transferred from P. taeda NC_021440 and carefully revised by hand. Phylogenetic analysis with additional plastomes revealed very short branch lengths, supporting a rapid diversification within Australes and close relatedness among pines from Western Mexico.

7.
J Ethnobiol Ethnomed ; 9: 76, 2013 Nov 14.
Article in English | MEDLINE | ID: mdl-24229087

ABSTRACT

BACKGROUND: Selection criteria are important for analyzing domestication of perennial plant species, which experience a selection pressure throughout several human generations. We analyze the preferred morphological characteristics of Crescentia cujete fruits, which are used as bowls by the Maya of Yucatan, according to the uses they are given and the phenotypic consequences of artificial selection between one wild and three domesticated varieties. METHODS: We performed 40 semi-structured interviews in seven communities. We calculated Sutrop's salience index (S) of five classes of ceremonial and daily life uses, and of each item from the two most salient classes. We sampled 238 bowls at homes of people interviewed and compared their shape, volume and thickness with 139 fruits collected in homegardens and 179 from the wild. Morphology of varieties was assessed in fruit (n = 114 trees) and vegetative characters (n = 136 trees). Differences between varieties were evaluated through linear discriminant analysis (LDA). RESULTS: Use of bowls as containers for the Day of the Dead offerings was the most salient class (S = 0.489) with chocolate as its most salient beverage (S = 0.491), followed by consumption of daily beverages (S = 0.423), especially maize-based pozol (S = 0.412). The sacred saka' and balche' are offered in different sized bowls during agricultural and domestic rituals. Roundness was the most relevant character for these uses, as bowls from households showed a strong selection towards round shapes compared with wild and homegarden fruits. Larger fruits from domesticated varieties were also preferred over small wild fruits, although in the household different sizes of the domesticated varieties are useful. LDA separated wild from domesticated trees (p < 0.001) according to both fruit and vegetative variables, but domesticated varieties were not different among themselves. CONCLUSIONS: The association between C. cujete bowls and traditional beverages in ritual and daily life situations has driven for centuries the selection of preferred fruit morphology in this tree. Selection of fruit roundness and volume has allowed for the differentiation between the wild variety and the three domesticated ones, counteracting gene flow among them. By choosing the best fruits from domesticated varieties propagated in homegardens, the Maya people model the domestication process of this important tree in their culture.


Subject(s)
Crops, Agricultural , Ethnobotany , Household Articles , Indians, North American , Trees , Biodiversity , Ceremonial Behavior , Culture , Gardening , Humans , Interviews as Topic , Mexico , Phenotype
8.
Ann Bot ; 109(7): 1297-306, 2012 Jun.
Article in English | MEDLINE | ID: mdl-22499854

ABSTRACT

BACKGROUND AND AIMS: Artificial selection, the main driving force of domestication, depends on human perception of intraspecific variation and operates through management practices that drive morphological and genetic divergences with respect to wild populations. This study analysed the recognition of varieties of Crescentia cujete by Maya people in relation to preferred plant characters and documents ongoing processes of artificial selection influencing differential chloroplast DNA haplotype distribution in sympatric wild and home-garden populations. METHODS: Fifty-three home gardens in seven villages (93 trees) and two putative wild populations (43 trees) were sampled. Through semi-structured interviews we documented the nomenclature of varieties, their distinctive characters, provenance, frequency and management. Phenotypic divergence of fruits was assessed with morphometric analyses. Genetic analyses were performed through five cpDNA microsatellites. KEY RESULTS: The Maya recognize two generic (wild/domesticated) and two specific domesticated (white/green) varieties of Crescentia cujete. In home gardens, most trees (68 %) were from domesticated varieties while some wild individuals (32 %) were tolerated. Cultivation involves mainly vegetative propagation (76 %). Domesticated fruits were significantly rounder, larger and with thicker pericarp than wild fruits. Haplotype A was dominant in home gardens (76 %) but absent in wild populations. Haplotypes B-F were found common in the wild but at low frequency (24 %) in home gardens. CONCLUSIONS: The gourd tree is managed through clonal and sexual propagules, fruit form and size being the main targets of artificial selection. Domesticated varieties belong to a lineage preserved by vegetative propagation but propagation by seeds and tolerance of spontaneous trees favour gene flow from wild populations. Five mutational steps between haplotypes A and D suggest that domesticated germplasm has been introduced to the region. The close relationship between Maya nomenclature and artificial selection has maintained the morphological and haplotypic identity (probably for centuries) of domesticated Crescentia despite gene flow from wild populations.


Subject(s)
Selection, Genetic , Trees/genetics , DNA, Satellite/genetics , Mexico , Microsatellite Repeats/genetics
SELECTION OF CITATIONS
SEARCH DETAIL