Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Food Biochem ; 43(9): e12982, 2019 09.
Article in English | MEDLINE | ID: mdl-31489672

ABSTRACT

We investigated the impact of sonochemical action and the reaction of Hermetia illucens larvae meal protein (HILMP) as regards enzymolysis under varied enzyme concentration and temperature to explain the mechanism and effect of sonication on molecular conformation, limits of kinetics, free-Gibbs energy, and antioxidative capacity. Control treatment was used for comparison. The results showed sonochemical treatment enhanced HILMP-enzymolysis efficiency at various enzyme volume, and temperature. Enzymolysis-kinetics revealed sonochemical treatment increased the rate constant (p < .05) by 17.21%, 25.06%, 26.91%, and 41.38% at 323, 313, 303, and 293 K, respectively. On free-Gibbs, sonochemical treatment reduced the reactants-reactivity energy, enthalpy, and entropy by 30.53%, 35.05%, and 10.71%, respectively (p < .05). Changes in spectra of UV and fluorescence, and micrographic imaging indicated alterations of HILMP by sonochemical treatment. Antioxidative activity of sonochemically-treated HILMP increased, compared to control. Thus, sonochemical treatment may be beneficial in the production of edible insect proteins with smaller molecular weights for different food and/or pharmaceutical applications. PRACTICAL APPLICATIONS: Sonochemical pretreatment of HILMP positively impacted it enzymolysis rate-reaction, stability of reaction products, structure, and bioactivity. Thus, the technique may be beneficial to industry in the processing/development of new (bioactive/pharmaceutical) products involving enzymolysis of edible insects (e.g., Hermetia illucens) protein; particularly at such a time where edible insects are projected to be a source of protein for human nutrition and livestock in the next few years.


Subject(s)
Antioxidants/pharmacology , Edible Insects/chemistry , Insect Proteins/chemistry , Sonication , Animals , Antioxidants/chemistry , Food Handling , Larva , Spectrum Analysis , Thermodynamics
2.
Ultrason Sonochem ; 58: 104676, 2019 Nov.
Article in English | MEDLINE | ID: mdl-31450306

ABSTRACT

Hermetia illucens (edible insect) larvae protein, and hydrolysates were prepared using three pretreatment modes (conventional, fixed-frequency ultrasonic, and sweep-frequency). Protein subunit scores, microstructure, antioxidative activity, and techno-functional property of the respective isolates and hydrolysates were investigated. Alkaline protease hydrolysis significantly enhanced protein solubility, but impaired the emulsifying property and foaming stability. Isolates and hydrolysates treated by ultrasound exhibited highest antioxidative effect, and showed excellent solubility and foam expansion over wide (2-12) pH, likened the conventional. Ultrasonic, particularly sweep-frequency, treated hydrolysates overall showed superior solubility, foam, and antioxidative (ABTS, Superoxide scavenging, and Ferric-reducing) capacity than the remaining modes and isolates (p < 0.05). Treatment type influenced microstructure, functional attributes and antioxidative capacity of hydrolysates and isolates. Thus, functional/antioxidative property could be improved or modified for different food applications based on elected treatment. H. illucens isolate and hydrolysate preparations thereof could suitably be used in development of novel food formulations.


Subject(s)
Antioxidants/chemistry , Diptera/chemistry , Insect Proteins/chemistry , Ultrasonic Waves , Amino Acids/analysis , Animals , Hydrolysis , Hydrophobic and Hydrophilic Interactions , Larva/chemistry , Solubility , Superoxides/chemistry
3.
Mikrochim Acta ; 185(8): 378, 2018 07 17.
Article in English | MEDLINE | ID: mdl-30019262

ABSTRACT

A system composed of upconversion nanoparticles (UCNPs) and N,N-diethyl-p-phenylenediamine (EPA) is shown to be a useful probe for highly sensitive and selective fluorometric determination of ferric ion. The fluorescence of the UCNPs (under the 980 nm excitation) has peaks at 546, 657, 758 and 812 nm. EPA is readily oxidized by Fe(III) to generate a dye with a peak at 552 nm. This causes an inner filter effect on the fluorescence peaks at 546 nm, whereas the emissions at 657, 758 and 812 nm remained unchanged. Therefore, the iron concentration can be quantified by measurement of the ratio of fluorescence at 546 and 758. Under optimal condition, the ratio drops linearly in the 0.25 to 50 µM. Fe(III) concentration ranges, with a detection limit of 0.25 µM. The method is highly selective and was applied to the analysis of spiked samples (wastewater) where it gave recoveries of between 100.9 and 107.3%; and RSD values between 0.8 and 1.4%. Results are approximately the same as those obtained by AAS. Graphical abstract A method is presented for fluorimetric determination of Fe(III). Fe(III) reacts with N,N-diethyl-p-phenylenediamine (EPA) to generate EPA oxide. The fluorescence peaking at 546 nm is reduced in presence of oxidized EPA via an inner filter.

SELECTION OF CITATIONS
SEARCH DETAIL
...