Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Micromachines (Basel) ; 15(1)2023 Dec 30.
Article in English | MEDLINE | ID: mdl-38258202

ABSTRACT

Limitations of bone defect reconstruction include poor bone healing and osteointegration with acrylic cements, lack of strength with bone putty/paste, and poor osteointegration. Tissue engineering aims to bridge these gaps through the use of bioactive implants. However, there is often a risk of infection and biofilm formation associated with orthopedic implants, which may develop anti-microbial resistance. To promote bone repair while also locally delivering therapeutics, 3D-printed implants serve as a suitable alternative. Soft, nanoporous 3D-printed filaments made from a thermoplastic polyurethane and polyvinyl alcohol blend, LAY-FOMM and LAY-FELT, have shown promise for drug delivery and orthopedic applications. Here, we compare 3D printability and sustained antibiotic release kinetics from two types of commercial 3D-printed porous filaments suitable for bone tissue engineering applications. We found that both LAY-FOMM and LAY-FELT could be consistently printed into scaffolds for drug delivery. Further, the materials could sustainably release Tetracycline over 3 days, independent of material type and infill geometry. The drug-loaded materials did not show any cytotoxicity when cultured with primary human fibroblasts. We conclude that both LAY-FOMM and LAY-FELT 3D-printed scaffolds are suitable devices for local antibiotic delivery applications, and they may have potential applications to prophylactically reduce infections in orthopedic reconstruction surgery.

2.
Biomater Adv ; 134: 112566, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35523644

ABSTRACT

Metastatic cancers can be highly heterogeneous, show large patient variability and are typically hard to treat due to chemoresistance. Personalized therapies are therefore needed to suppress tumor growth and enhance patient's quality of life. Identifying appropriate patient-specific therapies remains a challenge though, due mainly to non-physiological in vitro culture systems. Therefore, more complex and physiological in vitro human cancer microenvironment tools could drastically aid in development of new therapies. We developed a plasma-modified, electro-spun 3D scaffold (PP-3D-S) that can mimic the human cancer microenvironment for customized-cancer therapeutic screening. The PP-3D-S was characterized for optimal plasma-modifying treatment and scaffolds morphology including fiber diameter and pore size. PP-3D-S was then seeded with human fibroblasts to mimic a stromal tissue layer; cell adhesion on plasma-modified poly (lactic acid), PLA, electrospun mats vastly exceeded that on untreated controls. The cell-seeded scaffolds were then overlaid with alginate/gelatin-based hydrogel embedded with MDA-MB231 human breast cancer cells, representing a tumor-tissue interface. Among three different plasma treatments, we found that NH3 plasma promoted the most tumor cell migration to the scaffold surfaces after 7 days of culture. For all treated and non-treated mats, we observed a significant difference in tumor cell migration between small-sized and either medium- or large-sized scaffolds. In addition, we found that the PP-3D-S was highly comparable to the standard Matrigel® migration assays in two different sets of doxorubicin screening experiments, where 75% reduction in migration was achieved with 0.5 µM doxorubicin for both systems. Taken together, our data indicate that PP-3D-S is an effective, low-cost, and easy-to-use alternate 3D tumor migration model which may be suitable as a physiological drug screening tool for personalized medicine against metastatic cancers.


Subject(s)
Quality of Life , Tissue Scaffolds , Coculture Techniques , Doxorubicin/pharmacology , Humans , Hydrogels/pharmacology
3.
Global Spine J ; 12(4): 689-699, 2022 May.
Article in English | MEDLINE | ID: mdl-33769119

ABSTRACT

STUDY DESIGN: Systematic review. OBJECTIVES: Adult spinal deformity (ASD) can be a debilitating condition with a profound impact on patients' health-related quality of life (HRQoL). Many reports have suggested that the frailty status of a patient can have a significant impact on the outcome of the surgery. The present review aims to identify all pre-operative patient-specific frailty markers that are associated with postoperative outcomes following corrective surgery for ASD of the lumbar and thoracic spine. METHODS: A systematic review of the literature was performed to identify findings regarding pre-operative markers of frailty and their association with postoperative outcomes in patients undergoing ASD surgery of the lumbar and thoracic spine. The search was performed in the following databases: PubMed, Embase, Cochrane and CINAHL. RESULTS: An association between poorer performance on frailty scales and worse postoperative outcomes. Comorbidity indices were even more frequently employed with similar patterns of association between increased comorbidity burden and postoperative outcomes. Regarding the assessment of HRQoL, worse pre-operative ODI, SF-36, SRS-22 and NRS were shown to be predictors of post-operative complications, while ODI, SF-36 and SRS-22 were found to improve post-operatively. CONCLUSIONS: The findings of this review highlight the true breadth of the concept of "frailty" in ASD surgical correction. These parameters, which include frailty scales and various comorbidity and HRQoL indices, highlight the importance of identifying these factors preoperatively to ensure appropriate patient selection while helping to limit poor postoperative outcomes.

4.
J Clin Med ; 8(8)2019 Aug 14.
Article in English | MEDLINE | ID: mdl-31416169

ABSTRACT

Zoledronate (Zol) is an anti-resorptive/tumoral agent used for the treatment of many cancers including spinal bone metastasis. High systemic administration of a single dose is now the standard clinical care, yet it has been associated with several side effects. Here, we aimed to evaluate the effects of lower doses Zol on lung cancer and lung cancer-induced bone metastasis cells over a longer time period. Human lung cancer (HCC827) and three bone metastases secondary to lung cancer (BML1, BML3 and BML4) cells were treated with Zol at 1, 3 and 10 µM for 7 days and then assessed for cell proliferation, migration, invasion and apoptosis. Low Zol treatment significantly decreased cell proliferation (1, 3 and 10 µM), migration (3 and 10 µM) and invasion (10 µM) while increasing apoptosis (10 µM) in lung cancer and metastatic cells. Our data exploits the potential of using low doses Zol for longer treatment periods and reinforces this approach as a new therapeutic regimen to impede the development of metastatic bone cancer while limiting severe side effects following high doses of systemic drug treatment.

5.
Ann Transl Med ; 7(10): 223, 2019 May.
Article in English | MEDLINE | ID: mdl-31297388

ABSTRACT

The spine is one of the most common sites of bony metastases, and its involvement leads to significant patient morbidity. Surgical management in these patients is aimed at improving quality of life and functional status throughout the course of the disease. Resection of metastases often leads to critical size bone defects, presenting a challenge to achieving adequate bone regeneration to fill the void. Current treatment options for repairing these defects are bone grafting and commercial bone cements; however, each has associated limitations. Additionally, tumor recurrence and tumor-induced bone loss make bone regeneration particularly difficult. Systemic therapeutic delivery, such as bisphosphonates, have become standard of care to combat bone loss despite unfavorable systemic side-effects and lack of local efficacy. Developments from tissue engineering have introduced novel materials with osteoinductive and osteoconductive properties which also act as structural support scaffolds for bone regeneration. These new materials can also act as a therapeutic reservoir to sustainably release drugs locally as an alternative to systemic therapy. In this review, we outline recent advancements in tissue engineering and the role of translational research in developing implants that can fully repair bone defects while also delivering local therapeutics to curb tumor recurrence and improve patient quality of life.

6.
Cancer Cell Int ; 19: 28, 2019.
Article in English | MEDLINE | ID: mdl-30787671

ABSTRACT

BACKGROUND: Bisphosphonates (BPs) including zoledronate (zol) have become standard care for bone metastases as they effectively inhibit tumor-induced osteolysis and associated pain. Several studies have also suggested that zol has direct anti-tumor activity. Systemic administration at high doses is the current approach to deliver zol, yet it has been associated with debilitating side effects. Local therapeutic delivery offers the ability to administer much lower total dosage, while at the same time maintaining sustained high-local drug concentration directly at the target treatment site. Here, we aimed to assess effects of lower doses of zol on bone metastases over a longer time. METHODS: Prostate cancer cell line LAPC4 and prostate-induced bone metastasis cells were treated with zol at 1, 3 and 10 µM for 7 days. Following treatment, cell proliferation was assessed using Almarblue®, Vybrant MTT®, and Live/Dead® viability/cytotoxicity assays. Additionally, cell migration and invasion were carried out using Falcon™ cell culture inserts and Cultrex® 3D spheroid cell invasion assays respectively. RESULTS: We show that treatment with 3-10 µM zol over 7-days significantly decreased cell proliferation in both the prostate cancer cell line LAPC4 and cells from spine metastases secondary to prostate cancer. Using the same low-dose and longer time course for treatment, we demonstrate that 10 µM zol also significantly inhibits tumor cell migration and 3D-cell growth/invasion. CONCLUSIONS: This project harnesses the potential of using zol at low doses for longer treatment periods, which may be a viable treatment modality when coupled with biomaterials or biodevices for local delivery.

7.
Materials (Basel) ; 11(9)2018 Aug 21.
Article in English | MEDLINE | ID: mdl-30134523

ABSTRACT

The spine is the most common site of bone metastasis, often originating from prostate, lung, and breast cancers. High systemic doses of chemotherapeutics such as doxorubicin (DOX), cisplatin, or paclitaxel often have severe side effects. Surgical removal of spine metastases also leaves large defects which cannot spontaneously heal and require bone grafting. To circumvent these issues, we designed an approach for local chemotherapeutic delivery within 3D-printed scaffolds which could also potentially serve as a bone substitute. Direct treatment of prostate cancer cell line LAPC4 and patient derived spine metastases cells with 0.01 µM DOX significantly reduced metabolic activity, proliferation, migration, and spheroid growth. We then assessed uptake and release of DOX in a series of porous 3D-printed scaffolds on LAPC4 cells as well as patient-derived spine metastases cells. Over seven days, 60⁻75% of DOX loaded onto scaffolds could be released, which significantly reduced metabolic activity and proliferation of both LAPC4 and patient derived cells, while unloaded scaffolds had no effect. Porous 3D-printed scaffolds may provide a novel and inexpensive approach to locally deliver chemotherapeutics in a patient-specific manner at tumor resection sites. With a composite design to enhance strength and promote sustained drug release, the scaffolds could reduce systemic negative effects, enhance bone repair, and improve patient outcomes.

SELECTION OF CITATIONS
SEARCH DETAIL
...