Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 36
Filter
1.
BMC Infect Dis ; 24(1): 554, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38831286

ABSTRACT

BACKGROUND AND OBJECTIVE(S): CRISPR-Cas is a prokaryotic adaptive immune system that protects bacteria and archaea against mobile genetic elements (MGEs) such as bacteriophages plasmids, and transposons. In this study, we aimed to assess the prevalence of the CRISPR-Cas systems and their association with antibiotic resistance in one of the most challenging bacterial pathogens, Klebsiella pneumoniae. MATERIALS AND METHODS: A total of 105 K. pneumoniae isolates were collected from various clinical infections. Extended-spectrum ß-lactamases (ESBLs) phenotypically were detected and the presence of ESBL, aminoglycoside-modifying enzymes (AME), and CRISPR-Cas system subtype genes were identified using PCR. Moreover, the diversity of the isolates was determined by enterobacterial repetitive intergenic consensus (ERIC)-PCR. RESULTS: Phenotypically, 41.9% (44/105) of the isolates were found to be ESBL producers. A significant inverse correlation existed between the subtype I-E CRISPR-Cas system's presence and ESBL production in K. pneumoniae isolates. Additionally, the frequency of the ESBL genes blaCTX-M1 (3%), blaCTX-M9 (12.1%), blaSHV (51.5%), and blaTEM (33.3%), as well as some AME genes such as aac(3)-Iva (21.2%) and ant(2'')-Ia (3%) was significantly lower in the isolates with the subtype I-E CRISPR-Cas system in comparison to CRISPR-negative isolates. There was a significant inverse correlation between the presence of ESBL and some AME genes with subtype I-E CRISPR-Cas system. CONCLUSION: The presence of the subtype I-E CRISPR-Cas system was correlated with the antibiotic-resistant gene (ARGs). The isolates with subtype I-E CRISPR-Cas system had a lower frequency of ESBL genes and some AME genes than CRISPR-negative isolates.


Subject(s)
Anti-Bacterial Agents , CRISPR-Cas Systems , Klebsiella Infections , Klebsiella pneumoniae , beta-Lactamases , Klebsiella pneumoniae/genetics , Klebsiella pneumoniae/drug effects , Humans , beta-Lactamases/genetics , Klebsiella Infections/microbiology , Klebsiella Infections/epidemiology , Anti-Bacterial Agents/pharmacology , Microbial Sensitivity Tests , Drug Resistance, Bacterial/genetics , Prevalence , Male , Female , Middle Aged
2.
Heliyon ; 10(5): e26809, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38449645

ABSTRACT

Role of clustered regularly interspaced short palindromic repeats (CRISPR)-like sequences in antibiotic resistance and biofilm formation isn't clear. This study investigated association of CRISPR-like sequences with antibiotic resistance and biofilm formation in H. pylori isolates. Thirty-six of H. pylori isolates were studied for existence of CRISPR-like sequences using PCR method and their correlation with biofilm formation and antibiotic resistance. Microtiter-plate technique was utilized for investigating antibiotic resistance profile of isolates against amoxicillin, tetracycline, metronidazole and clarithromycin. Biofilm formation of isolates was analyzed by microtiter-plate-based-method. Out of 23 CRISPR-like positive isolates, 19 had ability of biofilm formation and 7 of 13 CRISPR-like negative isolates were able to form biofilm (Pvalue = 0.445). In CRISPR-like positive isolates, 11 (48%), 18 (78%), 18 (78%) and 23 (100%) were resistant to amoxicillin, tetracycline, metronidazole and clarithromycin, respectively. Since CRISPR-like sequences have role in antibiotic resistance, may be applied as genetic markers of antibiotic resistance. But there was no substantial correlation between biofilm formation and existence of CRISPR-like sequences. These results indicate possible importance of CRISPR-like sequences on acquisition of resistance to antibiotics in this bacterium.

4.
Article in English | MEDLINE | ID: mdl-37877143

ABSTRACT

In recent years, one of the most critical topics in microbiology that can be addressed is microbiome and microbiota. The term microbiome contains both the microbiota and structural elements, metabolites/signal molecules, and the surrounding environmental conditions, and the microbiota consists of all living members forming the microbiome. Among; the intestinal microbiota is one of the most important microbiota, also called the gut microbiota. After colonization, the gut microbiota can have different functions, including resistance to pathogens, maintaining the intestinal epithelium, metabolizing dietary and pharmaceutical compounds, and controlling immune function. Recently, studies have shown that the gut microbiota can prevent the formation of fat in the body. In this study, we examined the gut microbiota in various animals, including dogs, cats, dairy cows, sheep, chickens, horses, and people who live in urban and rural areas. Based on the review of various studies, it has been determined that the population of microbiota in animals and humans is different, and various factors such as the environment, nutrition, and contact with animals can affect the microbiota of people living in urban and rural areas.

5.
Curr Microbiol ; 80(5): 173, 2023 Apr 08.
Article in English | MEDLINE | ID: mdl-37029840

ABSTRACT

The present study aimed to investigate the biocompatibility, antibacterial/anti-biofilm effects of ciprofloxacin-loaded calcium carbonate (Cip- loaded CaCO3) nanoparticles against the common organisms responsible for osteomyelitis. The antibacterial and biofilm inhibitory activities were studied by determination of minimum inhibitory concentrations (MICs) and minimum biofilm inhibitory concentrations (MBICs), respectively. Hemolytic effects were determined for studying hemocompatibility. The SDS-PAGE method was used to study the interaction of Cip- loaded CaCO3 with plasma proteins. The effects of Cip- loaded CaCO3 on the cell viability of human bone marrow mesenchymal stem cells (hBM-MSCs) was detected. The Cip- loaded CaCO3 nanoparticles were shown a significant antimicrobial effect at lower concentrations than free ciprofloxacin. No significant hemolytic effect was observed. The Cip- loaded CaCO3 nanoparticles have shown interaction with apolipoprotein A1 (28 kDa) and albumin (66.5 kDa). The viability of hBM-MSCs treated with Cip- loaded CaCO3 was more than 96%. Our results indicated that Cip-loaded CaCO3 nanoparticles had favorable in vitro compatibility with human red blood cells, antimicrobial effects, and low cytotoxicity.


Subject(s)
Nanoparticles , Osteomyelitis , Humans , Ciprofloxacin/pharmacology , Calcium Carbonate/pharmacology , Anti-Bacterial Agents/pharmacology , Microbial Sensitivity Tests , Osteomyelitis/drug therapy
6.
Biomed Res Int ; 2023: 3775142, 2023.
Article in English | MEDLINE | ID: mdl-36644166

ABSTRACT

Background: The present study is aimed at surveying the antibiotics resistance profile, biofilm formation ability, staphylococcal cassette chromosome mec (SCCmec) types, and molecular epidemiology of Staphylococcus epidermidis and Staphylococcus haemolyticus isolated from hospitalized patients and healthcare workers in four teaching hospitals in Iran. Methods: In total, 43 Staphylococcus epidermidis and 12 Staphylococcus haemolyticus were isolated from hospitalized patients, and 19 Staphylococcus epidermidis and 7 Staphylococcus haemolyticus isolated from healthcare workers were included in the present study. The antimicrobial resistance profile of isolates was determined using the disk diffusion method. Moreover, the resistance of isolates to methicillin was identified using the cefoxitin disk diffusion test. The microtiter-plate test was used for quantifying biofilm formation. Moreover, the frequency of icaA and icaD genes was determined using PCR assay. The molecular epidemiology of methicillin-resistant isolates was determined using SCCmec typing and pulsed-field gel electrophoresis methods. Results: Among all coagulase-negative staphylococci isolates, the highest resistance rate (81.5%) was seen for cefoxitin and cotrimoxazole. All of the isolates were susceptible to linezolid. Out of the 66 mecA-positive isolates, the most common SCCmec type was the type I (n = 23; 34.8%) followed by type IV (n = 13; 19.7%). Using pulsed-field gel electrophoresis (PFGE) assay, 27 PFGE types including 14 common types and 13 singletons were obtained among 51 methicillin-resistant S. epidermidis (MRSE) isolates. Moreover, among 12 methicillin-resistant S. haemolyticus (MRSH) isolates, 8 PFGE types were detected, of which 5 PFGE types were singletons. Conclusion: The high rate of resistance to antibiotics as well as the possibility of cross-infection shows the importance of a pattern shift in the management and controlling programs of coagulase-negative staphylococci, especially in healthcare centers. Clinical trial registration. The present study is not a clinical trial study. Thus, a registration number is not required.


Subject(s)
Staphylococcal Infections , Staphylococcus epidermidis , Humans , Staphylococcus epidermidis/genetics , Staphylococcus haemolyticus/genetics , Cefoxitin , Coagulase , Iran/epidemiology , Staphylococcal Infections/drug therapy , Staphylococcal Infections/epidemiology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Staphylococcus , Health Personnel , Microbial Sensitivity Tests
7.
J Intensive Care Med ; 38(1): 121-131, 2023 Jan.
Article in English | MEDLINE | ID: mdl-35603752

ABSTRACT

Sepsis, as an important public health concern, is one of the leading causes of death in hospitals around the world, accounting for 25% of all deaths. Nowadays, several factors contribute to the development of sepsis. The role of the gut microbiota and the response state of the aberrant immune system is dominant. The effect of the human microbiome on health is undeniable, and gut microbiota is even considered a body organ. It is now clear that the alteration in the normal balance of the microbiota (dysbiosis) is associated with a change in the status of immune system responses. Owing to the strong association between the gut microbiota and its metabolites particularly short-chain fatty acids with many illnesses, the gut microbiota has a unique position in the research of microbiologists and even clinicians. This review aimed to analyze studies' results on the association between microbiota and sepsis, with a substantial understanding of their relationship. As a result, an extensive and comprehensive search was conducted on this issue in existing databases.


Subject(s)
Gastrointestinal Microbiome , Microbiota , Sepsis , Humans , Gastrointestinal Microbiome/physiology , Dysbiosis , Immune System
8.
Can J Infect Dis Med Microbiol ; 2021: 2131787, 2021.
Article in English | MEDLINE | ID: mdl-34795808

ABSTRACT

Accumulating evidence indicates that specific strains of mucosa-associated Escherichia coli (E. coli) can influence the development of colorectal carcinoma. This study aimed to investigate the prevalence and characterization of mucosa-associated E. coli obtained from the colorectal cancer (CRC) patients and control group. At two referral university-affiliated hospitals in northwest Iran, 100 patients, 50 with CRC and 50 without, were studied over the course of a year. Fresh biopsy specimens were used to identify mucosa-associated E. coli isolates after dithiothreitol mucolysis. To classify the E. coli strains, ten colonies per sample were typed using enterobacterial repetitive intergenic consensus-based PCR (ERIC-PCR). The strains were classified into phylogroups using the quadruplex PCR method. The PCR method was used to examine for the presence of cyclomodulin, bfp, stx1, stx2, and eae-encoding genes. The strains were tested for biofilm formation using the microtiter plate assay. CRC patients had more mucosa-associated E. coli than the control group (p < 0.05). Enteropathogenic Escherichia coli (EPEC) was also found in 23% of CRC strains and 7.1% of control strains (p < 0.05). Phylogroup A was predominant in control group specimens, while E. coli isolates from CRC patients belonged most frequently to phylogroups D and B2. Furthermore, the frequency of cyclomodulin-encoding genes in the CRC patients was significantly higher than the control group. Around 36.9% of E. coli strains from CRC samples were able to form biofilms, compared to 16.6% E. coli strains from the control group (p < 0.05). Noticeably, cyclomodulin-positive strains were more likely to form biofilm in comparison to cyclomodulin-negative strains (p < 0.05). In conclusion, mucosa-associated E. coli especially cyclomodulin-positive isolates from B2 and D phylogroups possessing biofilm-producing capacity colonize the gut mucosa of CRC patients.

9.
Can J Infect Dis Med Microbiol ; 2021: 2270307, 2021.
Article in English | MEDLINE | ID: mdl-34603564

ABSTRACT

BACKGROUND: Acute respiratory tract infections (ARTIs) are the leading cause of illnesses in children. Human respiratory syncytial virus (HRSV) and human parainfluenza viruses (HPIVs) are among the most common etiologic agents associated with viral respiratory tract infections in children worldwide. Nevertheless, limited information is available on the spread of infections of these two viruses in northwest Iran. OBJECTIVE: The purpose of the current study is to evaluate the frequency of RSV and HPIV-3 and clinical features among Iranian children with confirmed respiratory infections between April 2019 and March 2020. METHODS: 100 nasopharyngeal swabs were collected from hospitalized patients (under 5 years old) with ARTI from Tabriz Children's Hospital. Detection of respiratory viruses was performed using the nested RT-PCR method. RESULTS: Respiratory syncytial virus and HPIV-3 were recognized in 18% (18/100) and 2% (2/100) of children, respectively. Ten (55.6%) of the RSV-positive samples were male, while 8 (44.4%) were female. HPIV-3 was found only among 2 male patients (100%). Most patients (61.1%) with RSV infection were less than 12 months old. Additionally, samples that were positive for HPIV-3 were less than 12 months old. RSV infections had occurred mainly during the winter season. CONCLUSIONS: This study confirms that RSV can be one of the important respiratory pathogens in children in northwestern Iran. However, according to this study, HPIV-3 has a lower prevalence among children in this area than RSV. Therefore, implementing a routine diagnosis for respiratory pathogens can improve the management of respiratory infections in children.

10.
Adv Pharm Bull ; 10(4): 577-585, 2020 Sep.
Article in English | MEDLINE | ID: mdl-33072535

ABSTRACT

Purpose: In the present study, the poly (ε-caprolactone)/cellulose nanofiber containing ZrO2 nanoparticles (PCL/CNF/ZrO2 ) nanocomposite was synthesized for wound dressing bandage with antimicrobial activity. Methods: PCL/CNF/ZrO2 nanocomposite was synthesized in three different zirconium dioxide amount (0.5, 1, 2%). Also the prepared nanocomposites were characterized by Infrared spectroscopy (FT-IR), X-ray diffraction (XRD), differential scanning calorimetry (DSC), and thermogravimetric analysis (TGA). In addition, the morphology of the samples was observed by scanning electron microscopy (SEM). Results: Analysis of the XRD spectra showed a preserved structure for PCL semi-crystalline in nanocomposites and an increase in the concentrations of ZrO2 nanoparticles, the structure of nanocomposite was amorphous as well. The results of TGA, DTA, DSC showed thermal stability and strength properties for the nanocomposites which were more thermal stable and thermal integrate compared to PCL. The contact angles of the nanocomposites narrowed as the amount of ZrO2 in the structure increased. The evaluation of biological activities showed that the PCL/CNF/ZrO2 nanocomposite with various concentrations of ZrO2 nanoparticles exhibited moderate to good antimicrobial activity against all tested bacterial and fungal strains. Furthermore, cytocompatibility of the scaffolds was assessed by MTT assay and cell viability studies proved the non-toxic nature of the nanocomposites. Conclusion: The results show that the biodegradability of nanocomposite has advantages that can be used as wound dressing.

11.
Virulence ; 11(1): 1257-1267, 2020 12.
Article in English | MEDLINE | ID: mdl-32930628

ABSTRACT

Enterococcus faecalis is one of the important causative agents of nosocomial and life-threatening infections in human. Several studies have demonstrated that the presence of CRISPR-cas is associated with antibiotic susceptibility and lack of virulence traits. In this study, we aimed to assess the phenotypic and genotypic virulence determinants in relation to CRISPR elements from the dental-root canals and hospital-acquired isolates of E. faecalis. Eighty-eight hospital-acquired and 73 dental-root canal isolates of E. faecalis were assessed in this study. Phenotypic screening of the isolates included biofilm formation, and gelatinase and hemolysis activities. Genotypical screening using PCR was further used to evaluate the presence of CRISPR elements and different virulence-associated genes such as efaA, esp, cylA, hyl, gelE, ace, ebpR, and asa1. Biofilm formation, gelatinase, and hemolysis activities were detected in 93.8%, 29.2%, and 19.2% of the isolates, respectively. The most prevalent virulence-associated gene was ace, which was followed by efaA, whereas cylA was the least identified. The presence of CRISPR1-cas, orphan CRISPR2, and CRISPR3-cas was determined in 13%, 55.3%, and 17.4% of the isolates, respectively. CRISPR elements were significantly more prevalent in the dental-root canal isolates. An inverse significant correlation was found between CRISPR-cas loci, esp, and gelE, while direct correlations were observed in the case of cylA, hyl, gelE (among CRISPR-loci 1 and 3), asa1, ace, biofilm formation, and hemolysis activity. Findings, therefore, indicate that CRISPR-cas might prevent the acquisition of some respective pathogenicity factors in some isolates, though not all; so selective forces could not influence pathogenic traits. Abbreviations: BHI: brain-heart infusion agar; CRISPRs: Clustered regularly interspaced short palindromic repeats; Esp: Cell wall-associated protein; ENT: ear-nose-throat; ICU: intensive care units; OD: optical densities; PCR: polymerase chain reaction; SDS: sodium dodecyl sulfate; UTI: urinary tract infection.


Subject(s)
CRISPR-Cas Systems , Cross Infection/microbiology , Dental Pulp Cavity/microbiology , Enterococcus faecalis/genetics , Enterococcus faecalis/pathogenicity , Virulence Factors/genetics , Adolescent , Adult , Aged , Aged, 80 and over , Biofilms/growth & development , Child , Child, Preschool , Female , Genotype , Hemolysis , Humans , Infant , Male , Middle Aged , Phenotype , Virulence/genetics , Young Adult
12.
Infect Drug Resist ; 13: 2989-3005, 2020.
Article in English | MEDLINE | ID: mdl-32922047

ABSTRACT

There has been excessive rate of use of antibiotics to fight Pseudomonas aeruginosa (P. aeruginosa) infections worldwide, which has consequently caused the increased resistance to multiple antibiotics in this pathogen. Due to the widespread resistance and the current poor effect of antibiotics consumed to treat P. aeruginosa infections, finding some novel alternative therapeutic methods are necessary for the treatment of infections. The P. aeruginosa biofilms can cause severe infections leading to the increased antibiotic resistance and mortality rate among the patients. In this regard, there are no approaches that can efficiently manage these infections; therefore, novel and effective antimicrobial and antibiofilm agents are needed to control and treat these bacterial infections. Quorum sensing inhibitors (QSIs) or quorum quenchings (QQs) are now considered as potential therapeutic alternatives and/or adjuvants to the current failing antibiotics, which can control the virulence traits of the pathogens, so as a result, the host immune system can quickly eliminate bacteria. Thus, the aims of this review article were presenting a brief explanation of the research reports on the natural and synthetic QSIs of P. aeruginosa, and the assessment of the current understanding on the QS mechanisms and various QQ strategies in P. aeruginosa.

13.
Infect Drug Resist ; 13: 1971-1980, 2020.
Article in English | MEDLINE | ID: mdl-32606843

ABSTRACT

OBJECTIVE: Klebsiella pneumoniae, one of the clinical superbugs, causes diverse infections because of its variable capsular antigens. This study focused on K. pneumoniae and aimed to assess any correlation between capsular serotype, capsule-associated virulence genes, and evaluate its resistance to conventional antibiotics in order to gain insight into any regional differences. MATERIALS AND METHODS: A total of 61 K. pneumoniae collected from various clinical specimens were confirmed genotypically. Clinical and demographic data for all patients were reviewed. All isolates were subjected to antimicrobial susceptibility tests. Capsular serotyping and capsule-associated virulence genes were studied using the molecular method. RESULTS: All typeable isolates were typed into K5, K20, and K54 serotypes, and among them, K54 was observed to be predominant. The most common capsule-associated virulence genes comprised uge (93.4%), ycfM (91.8%), and wabG (88.5%), while wcaG (29.5%) and rmpA (21.3%) were noted at much lower prevalence rates. The gene wcaG was significantly associated with K54 positive isolates (p = 0.001), while rmpA was associated with K20 positive isolates (p = 0.01). CONCLUSION: Serotype K54 had a high frequency in isolates collected from patients with pulmonary diseases, while serotype K20 was associated with burn patients. Carbapenems and levofloxacin were the best therapeutic options for the treatment of infections with serotypes K20 and K54.

14.
Infect Drug Resist ; 13: 1377-1385, 2020.
Article in English | MEDLINE | ID: mdl-32494169

ABSTRACT

BACKGROUND: Carbapenem-resistant Enterobacteriaceae (CRE) is a major concern leading to morbidity and mortality in the world. CRE often is becoming a cause of therapeutic failure in both hospital and community-acquired infections. AIM: This study aimed to investigate the resistance mechanisms of CRE by phenotypic and molecular methods. MATERIALS AND METHODS: Sixty CRE (50 Klebsiella pneumoniae, 6 Escherichia coli, and 4 Enterobacter spp.) were isolated from October 2018 to June 2019. Antimicrobial susceptibility testing was carried out using phenotypic methods. The carbapenem resistance mechanisms including efflux pump hyperexpression, AmpC overproduction, carbapenemase genes, and deficiency in OmpK35 and OmpK36 were determined by phenotypic and molecular methods, respectively. RESULTS: Sixty CRE (50 Klebsiella pneumoniae, 6 Escherichia coli, and 4 Enterobacter spp.) were isolated from October 2018 to June 2019. Amikacin was found to be the most effective drug against CRE isolates. All isolates were resistant to imipenem and meropenem by the micro-broth dilution. AmpC overproduction was observed in all Enterobacter spp. and three K. pneumoniae isolates. No efflux pump activity was found. Carba NP test and Modified Hodge Test could find carbapenemase in 59 (98%) isolates and 57 (95%) isolates, respectively. The most common carbapenemase gene was bla OXA-48-like (72.8%) followed by bla NDM (50.8%), bla IMP (18.6%), bla VIM (11.8%), and bla KPC (6.7%). The ompK35 and ompK36 genes were not detected in 10 and 7 K. pneumoniae isolates, respectively. CONCLUSION: The amikacin is considered as a very efficient antibiotic for the treatment of CRE isolates in our region. Carbapenemase production and overproduction of AmpC are the main carbapenem resistance mechanisms in CRE isolates. Finally, Carba NP test is a rapid and reliable test for early detection of carbapenemase-producing isolates.

15.
Infect Drug Resist ; 13: 1111-1121, 2020.
Article in English | MEDLINE | ID: mdl-32368102

ABSTRACT

Rapid emergence of antibiotic-resistant bacteria has made it harder for us to combat infectious diseases and to develop new antibiotics. The clustered regularly interspaced short palindromic repeats - CRISPR-associated (CRISPR-Cas) system, as a bacterial adaptive immune system, is recognized as one of the new strategies for controlling antibiotic-resistant strains. The programmable Cas nuclease of this system used against bacterial genomic sequences could be lethal or could help reduce resistance of bacteria to antibiotics. Therefore, this study aims to review using the CRISPR-Cas system to promote sensitizing bacteria to antibiotics. We envision that CRISPR-Cas approaches may open novel ways for the development of smart antibiotics, which could eliminate multidrug-resistant (MDR) pathogens and differentiate between beneficial and pathogenic microorganisms. These systems can be exploited to quantitatively and selectively eliminate individual bacterial strains based on a sequence-specific manner, creating opportunities in the treatment of MDR infections, the study of microbial consortia, and the control of industrial fermentation.

16.
Health Promot Perspect ; 10(2): 148-151, 2020.
Article in English | MEDLINE | ID: mdl-32296628

ABSTRACT

Background: Clostridium difficile is known as a prevalent pathogen leading to infections ranging from mild diarrhea to severe disease and death. The aim of the present study was to evaluate the incidence of C. difficile from inpatients with nosocomial diarrhea hospitalized in different wards in the northwest region of Iran. Methods: In this cross-sectional study, 485 diarrheal stool samples were collected from 384 patients referred from different wards of Imam Reza, Sina and Pediatric hospitals, Tabriz and transferred to the laboratory from 25 March 2015 till 1 March 2018. Immuno-chromatographicassay for detection of toxins A and B of C. difficile was used for identification. Results: Clostridium difficile was isolated from 24 (4.7%) out of 485 samples. Fifteen patients(62.5%) were males and 9 were females (37.5%). Twelve positive patients were from the gastrointestinal ward (50%), 5 patients (20.8%) from surgery ward, 3 patients from infectious disease ward (12.5%), 3 patients from rheumatology ward (12.5%) and 1 patient (4.1%) were collected from neurology ward. 95.3% of diarrhea samples had no signs from toxin A and B. Conclusion: These results indicate most of infected patients were from the gastrointestinaland surgery wards which show a different pattern of infection compared to previous studies.The neurology department had the lowest rate of infection. C. difficile is a health threat afterantibiotic consumption and for health promotion, developing strategies for less antibioticconsumption and preventing these emerging infections is critical. The low rate of this infection shows improvement in knowledge and effect of stewardships in physicians.

17.
Arch Microbiol ; 202(4): 765-772, 2020 May.
Article in English | MEDLINE | ID: mdl-31822952

ABSTRACT

This research was conducted using 50 samples of popular traditional cheeses and 160 enterococcal clinical isolates. Phenotypic and genotypic methods used for identification of enterococci. Then, the incidences of antibacterial resistance and virulence traits were investigated. In total, 165 E. faecalis and 43 E. faecium obtained from traditional cheeses and different clinical isolates were analyzed in the study. Antibiotic susceptibility testing revealed 175(84.1%) isolates with multi-drug resistance (MDR) patterns, which was more common among clinical sources. The predominant virulence profile, including gelE, asa1 and cpd was detected within 47 (22.6%) of the MDR isolates. Our results showed that traditional cheeses and clinical E. faecalis isolates have distinct patterns of virulence traits. The identified enterococci with antibiotic resistance and associated virulence factors, could provide a potential risk to the public health.


Subject(s)
Cheese/microbiology , Enterococcus faecalis/drug effects , Enterococcus faecalis/pathogenicity , Enterococcus faecium/drug effects , Enterococcus faecium/pathogenicity , Gram-Positive Bacterial Infections/microbiology , Anti-Bacterial Agents/pharmacology , Drug Resistance, Bacterial/drug effects , Enterococcus faecalis/genetics , Enterococcus faecalis/isolation & purification , Enterococcus faecium/genetics , Enterococcus faecium/isolation & purification , Genotype , Humans , Iran , Microbial Sensitivity Tests , Phenotype , Virulence Factors/genetics
18.
Microb Drug Resist ; 25(6): 951-958, 2019.
Article in English | MEDLINE | ID: mdl-30817229

ABSTRACT

Uropathogenic Escherichia coli (UPEC) is a well-known pathogen that has perturbed the medical scenario because of its resistance to diverse therapeutic drugs and its ability to form a biofilm. Different O-serogroups are the prevalent cause of urinary tract infections (UTIs) along with their ability to form a biofilm. The present research aimed to assess antibiotic susceptibility, biofilm formation, and serotyping of UPEC isolates in conjunction with the demographic data. Antibiotic susceptibility was determined using the Kirby-Bauer method and biofilm formation was assessed phenotypically and at the molecular level. Serotyping was performed by multiplex PCR. A significant proportion of the total of 120 UPECs was isolated from women (p < 0.05). Most isolates were resistant to cefotaxime, ceftazidime, and tetracycline, but maintained their sensitivity to imipenem. O25, O15, O8, and O75 were the most commonly detected serogroups. Moreover, O25, O15, and O8 were the highest biofilm-producing serogroups among the UPEC isolates. Serogroups O75 and O21 were significantly associated with diabetic patients and subjects with renal disease, respectively (p < 0.05). Overall, our results show that UTI incidence in women should be a subject of concern. The high prevalence of the O25 serogroup associated with a specific antibiotic profile and a high percentage of biofilm formation suggests a close relation between serogroups and characteristic features of UPEC isolates.


Subject(s)
Anti-Bacterial Agents/therapeutic use , Biofilms/drug effects , Escherichia coli Infections/drug therapy , Urinary Tract Infections/drug therapy , Uropathogenic Escherichia coli/drug effects , Uropathogenic Escherichia coli/genetics , Adolescent , Adult , Aged , Aged, 80 and over , Child , Child, Preschool , Female , Humans , Infant , Male , Middle Aged , Serogroup , Serotyping/methods , Young Adult
19.
Microb Drug Resist ; 24(8): 1165-1173, 2018 Oct.
Article in English | MEDLINE | ID: mdl-29708837

ABSTRACT

This study was conducted to investigate the phenotypic and genotypic characteristics of vancomycin-resistant Enterococcus faecalis and Enterococcus faecium. Antibiotic resistance and virulence genes in the aforementioned resistant isolates were studied using the epsilometer (E)-test and polymerase chain reaction (PCR). These isolates were subjected to typing by pulsed-field gel electrophoresis (PFGE). Thirty vancomycin-resistant enterococci (VRE; 18.75%) were isolated from a total of 160 various clinical specimens cultured for any bacterial growth. Of these, 11 (36.7%) isolates were identified as E. faecalis and 19 (63.3%) as E. faecium. Minimum inhibitory concentrations (MICs) of vancomycin, teicoplanin, and three alternative therapeutic options (linezolid, daptomycin, and quinupristin/dalfopristin) were determined using the E-test. Multiplex PCR was done for confirming species, identification of the resistant genotypes, and the detection of the virulence genes. Finally, the clonal relationship of all VRE strains was studied by PFGE. All VRE strains showed vancomycin MIC ≥256 µg/mL, and 27 (90%) isolates carried the vanA gene, whereas none of the isolates carried vanB. The most common resistance antibiotic pattern observed was toward rifampicin (n = 30 [100%]). Among all virulence genes studied, gelE (n = 28 [93.33%]) was found as the most prevalent virulent gene. VRE isolates exhibited 90%, 46.67%, 100%, and 66.67% resistance to teicoplanin, linezolid, quinupristin/dalfopristin, and daptomycin, respectively. Molecular typing demonstrated 16 PFGE types of VRE isolates (A-P). Although vanA was carried by most of the isolates, PFGE displayed small clonal dissemination among VR E. faecium and VR E. faecalis species.


Subject(s)
Enterococcus faecalis/genetics , Enterococcus faecium/genetics , Enterococcus faecium/isolation & purification , Vancomycin-Resistant Enterococci/genetics , Vancomycin-Resistant Enterococci/isolation & purification , Vancomycin/pharmacology , Anti-Bacterial Agents/pharmacology , Enterococcus faecalis/drug effects , Enterococcus faecalis/isolation & purification , Enterococcus faecium/drug effects , Genes, Bacterial/genetics , Gram-Positive Bacterial Infections/drug therapy , Gram-Positive Bacterial Infections/microbiology , Humans , Iran , Microbial Sensitivity Tests/methods , Molecular Epidemiology/methods , Molecular Typing/methods
20.
Infect Dis (Lond) ; 50(8): 616-624, 2018 08.
Article in English | MEDLINE | ID: mdl-29595080

ABSTRACT

INTRODUCTION: The wide distribution of extended-spectrum ß-lactamase (ESBL) producing Shigella spp., along with the emergence of fluoroquinolone resistant isolates, is a serious threat to public health, posing a new challenge for the effective treatment of shigellosis. The purpose of this study was to determine the level of antimicrobial resistance, the presence of genes encoding resistance to cephalosporins, and plasmid-mediated quinolone resistance (PMQR) among the clinical isolates of Shigella spp. in Iran. MATERIALS AND METHODS: A total of 142 Shigella isolates were collected from different parts of Iran. All of the cephalosporin resistant Shigella strains were selected based on ESBL and AmpC production. The presence of PMQR regions was assessed in ciprofloxacin-resistant isolates, and genetic relatedness in the isolates was determined. RESULTS: Seventy-eight Shigella isolates were found to be resistant to extended-spectrum cephalosporin (ESC). The blaCTX-M15 was the most prevalent cephalosporinase. Four ESBL-producing isolates were also resistant to ciprofloxacin. Among the PMQR regions, aac(6')-lb-cr gene was the most prevalent, as it was seen in 83.3% of the ciprofloxacin resistant isolates, while qnrA was positive in 16.7%. Clonal relatedness showed a limited variety of clones was responsible for Shigella infection in the region studied. CONCLUSION: Overall, our findings indicated that a large number of ESBL producing Shigella spp. were mediated mainly by blaCTX-M15. This study is the first report on ciprofloxacin-resistant ESBL-producing Shigella isolates from patients in Iran.


Subject(s)
Anti-Bacterial Agents/pharmacology , Bacterial Proteins/metabolism , Cephalosporinase/metabolism , Drug Resistance, Multiple, Bacterial , Dysentery, Bacillary/microbiology , Quinolones/pharmacology , Shigella/genetics , beta-Lactamases/metabolism , Adolescent , Adult , Aged , Bacterial Proteins/genetics , Cephalosporinase/genetics , Child , Child, Preschool , Female , Humans , Infant , Integrons , Iran , Male , Microbial Sensitivity Tests , Middle Aged , Molecular Typing , Phylogeny , Plasmids/genetics , Prospective Studies , Shigella/classification , Shigella/drug effects , Shigella/isolation & purification , Young Adult , beta-Lactamases/genetics
SELECTION OF CITATIONS
SEARCH DETAIL