Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 86
Filter
1.
Article in English | MEDLINE | ID: mdl-38958945

ABSTRACT

BACKGROUND: The stromal microenvironment (SME) is integral to breast cancer (BC) biology, impacting metastatic proclivity and treatment response. Emerging data indicate that host factors may impact the SME, but the relationship between pre-diagnostic host factors and SME phenotype remains poorly characterized, particularly among women of African ancestry. METHODS: We conducted a case-only analysis involving 792 BC patients (17-84 years) from the Ghana Breast Health Study (GBHS). High-accuracy machine-learning algorithms were applied to standard H&E-stained images to characterize SME phenotypes (including percent tumor-associated connective tissue stroma, Ta-CTS (%), and tumor-associated stromal cellular density, Ta-SCD (%)). Associations between pre-diagnostic host factors and SME phenotypes were assessed in multivariable linear regression models. RESULTS: Decreasing Ta-CTS and increasing Ta-SCD were associated with aggressive, mostly high-grade tumors (p-value<0.001). Several pre-diagnostic host factors were associated with Ta-SCD independently of tumor characteristics. Compared with nulliparous women, parous women had higher levels of Ta-SCD [mean (standard deviation, SD) = 31.3% (7.6%) vs. 28.9% (7.1%); p-value=0.01]. Similarly, women with a positive family history of breast cancer had higher levels of Ta-SCD than those without family history [mean (SD) = 33.0% (7.5%)] vs. 30.9% (7.6%); p-value=0.03]. Conversely, increasing body size was associated with decreasing Ta-SCD [mean (SD) = 32.0% (7.4%), 31.3% (7.3%), and 29.0% (8.0%) for slight, average, and large body sizes, respectively, p-value=0.005]. CONCLUSIONS: Epidemiological risk factors were associated with varying degrees of stromal cellularity in tumors, independently of clinicopathological characteristics. IMPACT: The findings raise the possibility that epidemiological risk factors may partly influence tumor biology via the SME.

2.
JAMIA Open ; 7(2): ooae055, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38938691

ABSTRACT

Objectives: Absolute risk models estimate an individual's future disease risk over a specified time interval. Applications utilizing server-side risk tooling, the R-based iCARE (R-iCARE), to build, validate, and apply absolute risk models, face limitations in portability and privacy due to their need for circulating user data in remote servers for operation. We overcome this by porting iCARE to the web platform. Materials and Methods: We refactored R-iCARE into a Python package (Py-iCARE) and then compiled it to WebAssembly (Wasm-iCARE)-a portable web module, which operates within the privacy of the user's device. Results: We showcase the portability and privacy of Wasm-iCARE through 2 applications: for researchers to statistically validate risk models and to deliver them to end-users. Both applications run entirely on the client side, requiring no downloads or installations, and keep user data on-device during risk calculation. Conclusions: Wasm-iCARE fosters accessible and privacy-preserving risk tools, accelerating their validation and delivery.

3.
Nat Genet ; 56(5): 819-826, 2024 May.
Article in English | MEDLINE | ID: mdl-38741014

ABSTRACT

We performed genome-wide association studies of breast cancer including 18,034 cases and 22,104 controls of African ancestry. Genetic variants at 12 loci were associated with breast cancer risk (P < 5 × 10-8), including associations of a low-frequency missense variant rs61751053 in ARHGEF38 with overall breast cancer (odds ratio (OR) = 1.48) and a common variant rs76664032 at chromosome 2q14.2 with triple-negative breast cancer (TNBC) (OR = 1.30). Approximately 15.4% of cases with TNBC carried six risk alleles in three genome-wide association study-identified TNBC risk variants, with an OR of 4.21 (95% confidence interval = 2.66-7.03) compared with those carrying fewer than two risk alleles. A polygenic risk score (PRS) showed an area under the receiver operating characteristic curve of 0.60 for the prediction of breast cancer risk, which outperformed PRS derived using data from females of European ancestry. Our study markedly increases the population diversity in genetic studies for breast cancer and demonstrates the utility of PRS for risk prediction in females of African ancestry.


Subject(s)
Black People , Breast Neoplasms , Genetic Predisposition to Disease , Genome-Wide Association Study , Polymorphism, Single Nucleotide , Humans , Female , Genome-Wide Association Study/methods , Breast Neoplasms/genetics , Black People/genetics , Case-Control Studies , Risk Factors , Triple Negative Breast Neoplasms/genetics , Alleles , Multifactorial Inheritance/genetics , Middle Aged , Genetic Loci , White People/genetics
4.
Nat Commun ; 15(1): 3718, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38697998

ABSTRACT

African-ancestry (AA) participants are underrepresented in genetics research. Here, we conducted a transcriptome-wide association study (TWAS) in AA female participants to identify putative breast cancer susceptibility genes. We built genetic models to predict levels of gene expression, exon junction, and 3' UTR alternative polyadenylation using genomic and transcriptomic data generated in normal breast tissues from 150 AA participants and then used these models to perform association analyses using genomic data from 18,034 cases and 22,104 controls. At Bonferroni-corrected P < 0.05, we identified six genes associated with breast cancer risk, including four genes not previously reported (CTD-3080P12.3, EN1, LINC01956 and NUP210L). Most of these genes showed a stronger association with risk of estrogen-receptor (ER) negative or triple-negative than ER-positive breast cancer. We also replicated the associations with 29 genes reported in previous TWAS at P < 0.05 (one-sided), providing further support for an association of these genes with breast cancer risk. Our study sheds new light on the genetic basis of breast cancer and highlights the value of conducting research in AA populations.


Subject(s)
Breast Neoplasms , Genetic Predisposition to Disease , Transcriptome , Adult , Aged , Female , Humans , Middle Aged , Black People/genetics , Breast Neoplasms/genetics , Case-Control Studies , Gene Expression Profiling , Gene Expression Regulation, Neoplastic , Genome-Wide Association Study , Polymorphism, Single Nucleotide , Receptors, Estrogen/genetics , Receptors, Estrogen/metabolism , Black or African American , United States
5.
Breast Cancer Res Treat ; 206(2): 295-305, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38653906

ABSTRACT

PURPOSE: Mammographic density phenotypes, adjusted for age and body mass index (BMI), are strong predictors of breast cancer risk. BMI is associated with mammographic density measures, but the role of circulating sex hormone concentrations is less clear. We investigated the relationship between BMI, circulating sex hormone concentrations, and mammographic density phenotypes using Mendelian randomization (MR). METHODS: We applied two-sample MR approaches to assess the association between genetically predicted circulating concentrations of sex hormones [estradiol, testosterone, sex hormone-binding globulin (SHBG)], BMI, and mammographic density phenotypes (dense and non-dense area). We created instrumental variables from large European ancestry-based genome-wide association studies and applied estimates to mammographic density phenotypes in up to 14,000 women of European ancestry. We performed analyses overall and by menopausal status. RESULTS: Genetically predicted BMI was positively associated with non-dense area (IVW: ß = 1.79; 95% CI = 1.58, 2.00; p = 9.57 × 10-63) and inversely associated with dense area (IVW: ß = - 0.37; 95% CI = - 0.51,- 0.23; p = 4.7 × 10-7). We observed weak evidence for an association of circulating sex hormone concentrations with mammographic density phenotypes, specifically inverse associations between genetically predicted testosterone concentration and dense area (ß = - 0.22; 95% CI = - 0.38, - 0.053; p = 0.009) and between genetically predicted estradiol concentration and non-dense area (ß = - 3.32; 95% CI = - 5.83, - 0.82; p = 0.009), although results were not consistent across a range of MR approaches. CONCLUSION: Our findings support a positive causal association between BMI and mammographic non-dense area and an inverse association between BMI and dense area. Evidence was weaker and inconsistent for a causal effect of circulating sex hormone concentrations on mammographic density phenotypes. Based on our findings, associations between circulating sex hormone concentrations and mammographic density phenotypes are weak at best.


Subject(s)
Body Mass Index , Breast Density , Breast Neoplasms , Genome-Wide Association Study , Gonadal Steroid Hormones , Mendelian Randomization Analysis , Humans , Female , Breast Neoplasms/genetics , Breast Neoplasms/blood , Breast Neoplasms/diagnostic imaging , Gonadal Steroid Hormones/blood , Sex Hormone-Binding Globulin/analysis , Sex Hormone-Binding Globulin/metabolism , Sex Hormone-Binding Globulin/genetics , Middle Aged , Polymorphism, Single Nucleotide , Mammography , Estradiol/blood , Testosterone/blood , Phenotype
6.
medRxiv ; 2024 Feb 13.
Article in English | MEDLINE | ID: mdl-38410445

ABSTRACT

The 313-variant polygenic risk score (PRS313) provides a promising tool for breast cancer risk prediction. However, evaluation of the PRS313 across different European populations which could influence risk estimation has not been performed. Here, we explored the distribution of PRS313 across European populations using genotype data from 94,072 females without breast cancer, of European-ancestry from 21 countries participating in the Breast Cancer Association Consortium (BCAC) and 225,105 female participants from the UK Biobank. The mean PRS313 differed markedly across European countries, being highest in south-eastern Europe and lowest in north-western Europe. Using the overall European PRS313 distribution to categorise individuals leads to overestimation and underestimation of risk in some individuals from south-eastern and north-western countries, respectively. Adjustment for principal components explained most of the observed heterogeneity in mean PRS. Country-specific PRS distributions may be used to calibrate risk categories in individuals from different countries.

7.
Hum Mol Genet ; 33(8): 687-697, 2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38263910

ABSTRACT

BACKGROUND: Expansion of genome-wide association studies across population groups is needed to improve our understanding of shared and unique genetic contributions to breast cancer. We performed association and replication studies guided by a priori linkage findings from African ancestry (AA) relative pairs. METHODS: We performed fixed-effect inverse-variance weighted meta-analysis under three significant AA breast cancer linkage peaks (3q26-27, 12q22-23, and 16q21-22) in 9241 AA cases and 10 193 AA controls. We examined associations with overall breast cancer as well as estrogen receptor (ER)-positive and negative subtypes (193,132 SNPs). We replicated associations in the African-ancestry Breast Cancer Genetic Consortium (AABCG). RESULTS: In AA women, we identified two associations on chr12q for overall breast cancer (rs1420647, OR = 1.15, p = 2.50×10-6; rs12322371, OR = 1.14, p = 3.15×10-6), and one for ER-negative breast cancer (rs77006600, OR = 1.67, p = 3.51×10-6). On chr3, we identified two associations with ER-negative disease (rs184090918, OR = 3.70, p = 1.23×10-5; rs76959804, OR = 3.57, p = 1.77×10-5) and on chr16q we identified an association with ER-negative disease (rs34147411, OR = 1.62, p = 8.82×10-6). In the replication study, the chr3 associations were significant and effect sizes were larger (rs184090918, OR: 6.66, 95% CI: 1.43, 31.01; rs76959804, OR: 5.24, 95% CI: 1.70, 16.16). CONCLUSION: The two chr3 SNPs are upstream to open chromatin ENSR00000710716, a regulatory feature that is actively regulated in mammary tissues, providing evidence that variants in this chr3 region may have a regulatory role in our target organ. Our study provides support for breast cancer variant discovery using prioritization based on linkage evidence.


Subject(s)
Black People , Breast Neoplasms , Genetic Predisposition to Disease , Female , Humans , Black People/genetics , Breast Neoplasms/genetics , Genome-Wide Association Study , Polymorphism, Single Nucleotide
8.
Breast Cancer Res ; 25(1): 150, 2023 12 11.
Article in English | MEDLINE | ID: mdl-38082317

ABSTRACT

Epidemiologic data on insecticide exposures and breast cancer risk are inconclusive and mostly from high-income countries. Using data from 1071 invasive pathologically confirmed breast cancer cases and 2096 controls from the Ghana Breast Health Study conducted from 2013 to 2015, we investigated associations with mosquito control products to reduce the spread of mosquito-borne diseases, such as malaria. These mosquito control products were insecticide-treated nets, mosquito coils, repellent room sprays, and skin creams for personal protection against mosquitos. Multivariable and polytomous logistic regression models were used to estimate odds ratios (ORadj) and 95% confidence intervals (CI) with breast cancer risk-adjusted for potential confounders and known risk factors. Among controls, the reported use of mosquito control products were mosquito coils (65%), followed by insecticide-treated nets (56%), repellent room sprays (53%), and repellent skin creams (15%). Compared to a referent group of participants unexposed to mosquito control products, there was no significant association between breast cancer risk and mosquito coils. There was an association in breast cancer risk with reported use of insecticide-treated nets; however, that association was weak and not statistically significant. Participants who reported using repellent sprays were at elevated risks compared to women who did not use any mosquito control products, even after adjustment for all other mosquito control products (OR = 1.42, 95% CI=1.15-1.75). We had limited power to detect an association with repellent skin creams. Although only a few participants reported using repellent room sprays weekly/daily or < month-monthly, no trends were evident with increased frequency of use of repellent sprays, and there was no statistical evidence of heterogeneity by estrogen receptor (ER) status (p-het > 0.25). Our analysis was limited when determining if an association existed with repellent skin creams; therefore, we cannot conclude an association. We found limited evidence of risk associations with widely used mosquito coils and insecticide-treated nets, which are reassuring given their importance for malaria prevention. Our findings regarding specific breast cancer risk associations, specifically those observed between repellent sprays, require further study.


Subject(s)
Breast Neoplasms , Insect Repellents , Insecticides , Malaria , Animals , Humans , Female , Mosquito Control , Insecticides/adverse effects , Ghana/epidemiology , Breast Neoplasms/epidemiology , Breast Neoplasms/etiology , Breast Neoplasms/prevention & control , Malaria/prevention & control , Insect Repellents/adverse effects
9.
ArXiv ; 2023 Oct 13.
Article in English | MEDLINE | ID: mdl-37873020

ABSTRACT

Objective: Absolute risk models estimate an individual's future disease risk over a specified time interval. Applications utilizing server-side risk tooling, such as the R-based iCARE (R-iCARE), to build, validate, and apply absolute risk models, face serious limitations in portability and privacy due to their need for circulating user data in remote servers for operation. Our objective was to overcome these limitations. Materials and Methods: We refactored R-iCARE into a Python package (Py-iCARE) then compiled it to WebAssembly (Wasm-iCARE): a portable web module, which operates entirely within the privacy of the user's device. Results: We showcase the portability and privacy of Wasm-iCARE through two applications: for researchers to statistically validate risk models, and to deliver them to end-users. Both applications run entirely on the client-side, requiring no downloads or installations, and keeps user data on-device during risk calculation. Conclusions: Wasm-iCARE fosters accessible and privacy-preserving risk tools, accelerating their validation and delivery.

10.
Nat Genet ; 55(10): 1757-1768, 2023 10.
Article in English | MEDLINE | ID: mdl-37749244

ABSTRACT

Polygenic risk scores (PRSs) increasingly predict complex traits; however, suboptimal performance in non-European populations raise concerns about clinical applications and health inequities. We developed CT-SLEB, a powerful and scalable method to calculate PRSs, using ancestry-specific genome-wide association study summary statistics from multiancestry training samples, integrating clumping and thresholding, empirical Bayes and superlearning. We evaluated CT-SLEB and nine alternative methods with large-scale simulated genome-wide association studies (~19 million common variants) and datasets from 23andMe, Inc., the Global Lipids Genetics Consortium, All of Us and UK Biobank, involving 5.1 million individuals of diverse ancestry, with 1.18 million individuals from four non-European populations across 13 complex traits. Results demonstrated that CT-SLEB significantly improves PRS performance in non-European populations compared with simple alternatives, with comparable or superior performance to a recent, computationally intensive method. Moreover, our simulation studies offered insights into sample size requirements and SNP density effects on multiancestry risk prediction.


Subject(s)
Multifactorial Inheritance , Population Health , Humans , Multifactorial Inheritance/genetics , Genome-Wide Association Study , Bayes Theorem , Polymorphism, Single Nucleotide/genetics , Risk Factors , Genetic Predisposition to Disease
11.
Breast Cancer Res ; 25(1): 93, 2023 08 09.
Article in English | MEDLINE | ID: mdl-37559094

ABSTRACT

BACKGROUND: Genome-wide studies of gene-environment interactions (G×E) may identify variants associated with disease risk in conjunction with lifestyle/environmental exposures. We conducted a genome-wide G×E analysis of ~ 7.6 million common variants and seven lifestyle/environmental risk factors for breast cancer risk overall and for estrogen receptor positive (ER +) breast cancer. METHODS: Analyses were conducted using 72,285 breast cancer cases and 80,354 controls of European ancestry from the Breast Cancer Association Consortium. Gene-environment interactions were evaluated using standard unconditional logistic regression models and likelihood ratio tests for breast cancer risk overall and for ER + breast cancer. Bayesian False Discovery Probability was employed to assess the noteworthiness of each SNP-risk factor pairs. RESULTS: Assuming a 1 × 10-5 prior probability of a true association for each SNP-risk factor pairs and a Bayesian False Discovery Probability < 15%, we identified two independent SNP-risk factor pairs: rs80018847(9p13)-LINGO2 and adult height in association with overall breast cancer risk (ORint = 0.94, 95% CI 0.92-0.96), and rs4770552(13q12)-SPATA13 and age at menarche for ER + breast cancer risk (ORint = 0.91, 95% CI 0.88-0.94). CONCLUSIONS: Overall, the contribution of G×E interactions to the heritability of breast cancer is very small. At the population level, multiplicative G×E interactions do not make an important contribution to risk prediction in breast cancer.


Subject(s)
Breast Neoplasms , Gene-Environment Interaction , Adult , Female , Humans , Genetic Predisposition to Disease , Breast Neoplasms/etiology , Breast Neoplasms/genetics , Bayes Theorem , Genome-Wide Association Study , Risk Factors , Polymorphism, Single Nucleotide , Case-Control Studies
12.
Cancers (Basel) ; 15(13)2023 Jun 23.
Article in English | MEDLINE | ID: mdl-37444426

ABSTRACT

FANCM germline protein truncating variants (PTVs) are moderate-risk factors for ER-negative breast cancer. We previously described the spectrum of FANCM PTVs in 114 European breast cancer cases. In the present, larger cohort, we report the spectrum and frequency of four common and 62 rare FANCM PTVs found in 274 carriers detected among 44,803 breast cancer cases. We confirmed that p.Gln1701* was the most common PTV in Northern Europe with lower frequencies in Southern Europe. In contrast, p.Gly1906Alafs*12 was the most common PTV in Southern Europe with decreasing frequencies in Central and Northern Europe. We verified that p.Arg658* was prevalent in Central Europe and had highest frequencies in Eastern Europe. We also confirmed that the fourth most common PTV, p.Gln498Thrfs*7, might be a founder variant from Lithuania. Based on the frequency distribution of the carriers of rare PTVs, we showed that the FANCM PTVs spectra in Southwestern and Central Europe were much more heterogeneous than those from Northeastern Europe. These findings will inform the development of more efficient FANCM genetic testing strategies for breast cancer cases from specific European populations.

13.
J Med Genet ; 60(12): 1186-1197, 2023 Nov 27.
Article in English | MEDLINE | ID: mdl-37451831

ABSTRACT

BACKGROUND: Polygenic risk score (PRS), calculated based on genome-wide association studies (GWASs), can improve breast cancer (BC) risk assessment. To date, most BC GWASs have been performed in individuals of European (EUR) ancestry, and the generalisation of EUR-based PRS to other populations is a major challenge. In this study, we examined the performance of EUR-based BC PRS models in Ashkenazi Jewish (AJ) women. METHODS: We generated PRSs based on data on EUR women from the Breast Cancer Association Consortium (BCAC). We tested the performance of the PRSs in a cohort of 2161 AJ women from Israel (1437 cases and 724 controls) from BCAC (BCAC cohort from Israel (BCAC-IL)). In addition, we tested the performance of these EUR-based BC PRSs, as well as the established 313-SNP EUR BC PRS, in an independent cohort of 181 AJ women from Hadassah Medical Center (HMC) in Israel. RESULTS: In the BCAC-IL cohort, the highest OR per 1 SD was 1.56 (±0.09). The OR for AJ women at the top 10% of the PRS distribution compared with the middle quintile was 2.10 (±0.24). In the HMC cohort, the OR per 1 SD of the EUR-based PRS that performed best in the BCAC-IL cohort was 1.58±0.27. The OR per 1 SD of the commonly used 313-SNP BC PRS was 1.64 (±0.28). CONCLUSIONS: Extant EUR GWAS data can be used for generating PRSs that identify AJ women with markedly elevated risk of BC and therefore hold promise for improving BC risk assessment in AJ women.


Subject(s)
Breast Neoplasms , Humans , Female , Breast Neoplasms/epidemiology , Breast Neoplasms/genetics , Genome-Wide Association Study , Jews/genetics , Israel/epidemiology , Genetic Predisposition to Disease , Risk Factors , Multifactorial Inheritance/genetics , Transcription Factors
14.
Microbiol Spectr ; 11(4): e0157223, 2023 08 17.
Article in English | MEDLINE | ID: mdl-37341612

ABSTRACT

The human fecal and oral microbiome may play a role in the etiology of breast cancer through modulation of endogenous estrogen metabolism. This study aimed to investigate associations of circulating estrogens and estrogen metabolites with the fecal and oral microbiome in postmenopausal African women. A total of 117 women with fecal (N = 110) and oral (N = 114) microbiome data measured by 16S rRNA gene sequencing, and estrogens and estrogen metabolites data measured by liquid chromatography tandem mass spectrometry were included. The outcomes were measures of the microbiome and the independent variables were the estrogens and estrogen metabolites. Estrogens and estrogen metabolites were associated with the fecal microbial Shannon index (global P < 0.01). In particular, higher levels of estrone (ß = 0.36, P = 0.03), 2-hydroxyestradiol (ß = 0.30, P = 0.02), 4-methoxyestrone (ß = 0.51, P = 0.01), and estriol (ß = 0.36, P = 0.04) were associated with higher levels of the Shannon index, while 16alpha-hydroxyestrone (ß = -0.57, P < 0.01) was inversely associated with the Shannon index as indicated by linear regression. Conjugated 2-methoxyestrone was associated with oral microbial unweighted UniFrac as indicated by MiRKAT (P < 0.01) and PERMANOVA, where conjugated 2-methoxyestrone explained 2.67% of the oral microbial variability, but no other estrogens or estrogen metabolites were associated with any other beta diversity measures. The presence and abundance of multiple fecal and oral genera, such as fecal genera from families Lachnospiraceae and Ruminococcaceae, were associated with several estrogens and estrogen metabolites as indicated by zero-inflated negative binomial regression. Overall, we found several associations of specific estrogens and estrogen metabolites and the fecal and oral microbiome. IMPORTANCE Several epidemiologic studies have found associations of urinary estrogens and estrogen metabolites with the fecal microbiome. However, urinary estrogen concentrations are not strongly correlated with serum estrogens, a known risk factor for breast cancer. To better understand whether the human fecal and oral microbiome were associated with breast cancer risk via the regulation of estrogen metabolism, we conducted this study to investigate the associations of circulating estrogens and estrogen metabolites with the fecal and oral microbiome in postmenopausal African women. We found several associations of parent estrogens and several estrogen metabolites with the microbial communities, and multiple individual associations of estrogens and estrogen metabolites with the presence and abundance of multiple fecal and oral genera, such as fecal genera from families Lachnospiraceae and Ruminococcaceae, which have estrogen metabolizing properties. Future large, longitudinal studies to investigate the dynamic changes of the fecal and oral microbiome and estrogen relationship are needed.


Subject(s)
Breast Neoplasms , Lactobacillales , Microbiota , Female , Humans , Estrogens/urine , Postmenopause/physiology , RNA, Ribosomal, 16S/genetics , Ghana/epidemiology , Breast Neoplasms/epidemiology , Breast Neoplasms/urine , Lactobacillales/metabolism
15.
NPJ Breast Cancer ; 9(1): 37, 2023 May 12.
Article in English | MEDLINE | ID: mdl-37173335

ABSTRACT

We assessed the PREDICT v 2.2 for prognosis of breast cancer patients with pathogenic germline BRCA1 and BRCA2 variants, using follow-up data from 5453 BRCA1/2 carriers from the Consortium of Investigators of Modifiers of BRCA1/2 (CIMBA) and the Breast Cancer Association Consortium (BCAC). PREDICT for estrogen receptor (ER)-negative breast cancer had modest discrimination for BRCA1 carrier patients overall (Gönen & Heller unbiased concordance 0.65 in CIMBA, 0.64 in BCAC), but it distinguished clearly the high-mortality group from lower risk categories. In an analysis of low to high risk categories by PREDICT score percentiles, the observed mortality was consistently lower than the expected mortality, but the confidence intervals always included the calibration slope. Altogether, our results encourage the use of the PREDICT ER-negative model in management of breast cancer patients with germline BRCA1 variants. For the PREDICT ER-positive model, the discrimination was slightly lower in BRCA2 variant carriers (concordance 0.60 in CIMBA, 0.65 in BCAC). Especially, inclusion of the tumor grade distorted the prognostic estimates. The breast cancer mortality of BRCA2 carriers was underestimated at the low end of the PREDICT score distribution, whereas at the high end, the mortality was overestimated. These data suggest that BRCA2 status should also be taken into consideration with tumor characteristics, when estimating the prognosis of ER-positive breast cancer patients.

16.
Res Sq ; 2023 Apr 14.
Article in English | MEDLINE | ID: mdl-37090574

ABSTRACT

Background: Emerging data suggest that beyond the neoplastic parenchyma, the stromal microenvironment (SME) impacts tumor biology, including aggressiveness, metastatic potential, and response to treatment. However, the epidemiological determinants of SME biology remain poorly understood, more so among women of African ancestry who are disproportionately affected by aggressive breast cancer phenotypes. Methods: Within the Ghana Breast Health Study, a population-based case-control study in Ghana, we applied high-accuracy machine-learning algorithms to characterize biologically-relevant SME phenotypes, including tumor-stroma ratio (TSR (%); a metric of connective tissue stroma to tumor ratio) and tumor-associated stromal cellular density (Ta-SCD (%); a tissue biomarker that is reminiscent of chronic inflammation and wound repair response in breast cancer), on digitized H&E-stained sections from 792 breast cancer patients aged 17-84 years. Kruskal-Wallis tests and multivariable linear regression models were used to test associations between established breast cancer risk factors, tumor characteristics, and SME phenotypes. Results: Decreasing TSR and increasing Ta-SCD were strongly associated with aggressive, mostly high grade tumors (p-value < 0.001). Several etiologic factors were associated with Ta-SCD, but not TSR. Compared with nulliparous women [mean (standard deviation) = 28.9% (7.1%)], parous women [mean (standard deviation) = 31.3% (7.6%)] had statistically significantly higher levels of Ta-SCD (p-value = 0.01). Similarly, women with a positive family history of breast cancer [FHBC; mean (standard deviation) = 33.0% (7.5%)] had higher levels of Ta-SCD than those with no FHBC [mean (standard deviation) = 30.9% (7.6%); p-value = 0.01]. Conversely, increasing body size was associated with decreasing Ta-SCD [mean (standard deviation) = 32.0% (7.4%), 31.3% (7.3%), and 29.0% (8.0%) for slight, moderate, and large body sizes, respectively, p-value = 0.005]. These associations persisted and remained statistically significantly associated with Ta-SCD in mutually-adjusted multivariable linear regression models (p-value < 0.05). With the exception of body size, which was differentially associated with Ta-SCD by grade levels (p-heterogeneity = 0.04), associations between risk factors and Ta-SCD were not modified by tumor characteristics. Conclusions: Our findings raise the possibility that epidemiological factors may act via the SME to impact both risk and biology of breast cancers in this population, underscoring the need for more population-based research into the role of SME in multi-state breast carcinogenesis.

17.
Genet Epidemiol ; 47(6): 432-449, 2023 09.
Article in English | MEDLINE | ID: mdl-37078108

ABSTRACT

Disease heterogeneity is ubiquitous in biomedical and clinical studies. In genetic studies, researchers are increasingly interested in understanding the distinct genetic underpinning of subtypes of diseases. However, existing set-based analysis methods for genome-wide association studies are either inadequate or inefficient to handle such multicategorical outcomes. In this paper, we proposed a novel set-based association analysis method, sequence kernel association test (SKAT)-MC, the sequence kernel association test for multicategorical outcomes (nominal or ordinal), which jointly evaluates the relationship between a set of variants (common and rare) and disease subtypes. Through comprehensive simulation studies, we showed that SKAT-MC effectively preserves the nominal type I error rate while substantially increases the statistical power compared to existing methods under various scenarios. We applied SKAT-MC to the Polish breast cancer study (PBCS), and identified gene FGFR2 was significantly associated with estrogen receptor (ER)+ and ER- breast cancer subtypes. We also investigated educational attainment using UK Biobank data ( N = 127 , 127 $N=127,127$ ) with SKAT-MC, and identified 21 significant genes in the genome. Consequently, SKAT-MC is a powerful and efficient analysis tool for genetic association studies with multicategorical outcomes. A freely distributed R package SKAT-MC can be accessed at https://github.com/Zhiwen-Owen-Jiang/SKATMC.


Subject(s)
Breast Neoplasms , Genome-Wide Association Study , Humans , Female , Genetic Variation , Models, Genetic , Computer Simulation , Breast Neoplasms/genetics
18.
Am J Hum Genet ; 110(3): 475-486, 2023 03 02.
Article in English | MEDLINE | ID: mdl-36827971

ABSTRACT

Evidence linking coding germline variants in breast cancer (BC)-susceptibility genes other than BRCA1, BRCA2, and CHEK2 with contralateral breast cancer (CBC) risk and breast cancer-specific survival (BCSS) is scarce. The aim of this study was to assess the association of protein-truncating variants (PTVs) and rare missense variants (MSVs) in nine known (ATM, BARD1, BRCA1, BRCA2, CHEK2, PALB2, RAD51C, RAD51D, and TP53) and 25 suspected BC-susceptibility genes with CBC risk and BCSS. Hazard ratios (HRs) and 95% confidence intervals (CIs) were estimated with Cox regression models. Analyses included 34,401 women of European ancestry diagnosed with BC, including 676 CBCs and 3,449 BC deaths; the median follow-up was 10.9 years. Subtype analyses were based on estrogen receptor (ER) status of the first BC. Combined PTVs and pathogenic/likely pathogenic MSVs in BRCA1, BRCA2, and TP53 and PTVs in CHEK2 and PALB2 were associated with increased CBC risk [HRs (95% CIs): 2.88 (1.70-4.87), 2.31 (1.39-3.85), 8.29 (2.53-27.21), 2.25 (1.55-3.27), and 2.67 (1.33-5.35), respectively]. The strongest evidence of association with BCSS was for PTVs and pathogenic/likely pathogenic MSVs in BRCA2 (ER-positive BC) and TP53 and PTVs in CHEK2 [HRs (95% CIs): 1.53 (1.13-2.07), 2.08 (0.95-4.57), and 1.39 (1.13-1.72), respectively, after adjusting for tumor characteristics and treatment]. HRs were essentially unchanged when censoring for CBC, suggesting that these associations are not completely explained by increased CBC risk, tumor characteristics, or treatment. There was limited evidence of associations of PTVs and/or rare MSVs with CBC risk or BCSS for the 25 suspected BC genes. The CBC findings are relevant to treatment decisions, follow-up, and screening after BC diagnosis.


Subject(s)
Breast Neoplasms , Female , Humans , Breast Neoplasms/genetics , Genes, BRCA2 , Germ-Line Mutation , Germ Cells , Genetic Predisposition to Disease
19.
Am J Epidemiol ; 192(6): 995-1005, 2023 06 02.
Article in English | MEDLINE | ID: mdl-36804665

ABSTRACT

Data sharing is essential for reproducibility of epidemiologic research, replication of findings, pooled analyses in consortia efforts, and maximizing study value to address multiple research questions. However, barriers related to confidentiality, costs, and incentives often limit the extent and speed of data sharing. Epidemiological practices that follow Findable, Accessible, Interoperable, Reusable (FAIR) principles can address these barriers by making data resources findable with the necessary metadata, accessible to authorized users, and interoperable with other data, to optimize the reuse of resources with appropriate credit to its creators. We provide an overview of these principles and describe approaches for implementation in epidemiology. Increasing degrees of FAIRness can be achieved by moving data and code from on-site locations to remote, accessible ("Cloud") data servers, using machine-readable and nonproprietary files, and developing open-source code. Adoption of these practices will improve daily work and collaborative analyses and facilitate compliance with data sharing policies from funders and scientific journals. Achieving a high degree of FAIRness will require funding, training, organizational support, recognition, and incentives for sharing research resources, both data and code. However, these costs are outweighed by the benefits of making research more reproducible, impactful, and equitable by facilitating the reuse of precious research resources by the scientific community.


Subject(s)
Confidentiality , Information Dissemination , Humans , Reproducibility of Results , Software , Epidemiologic Studies
20.
Genome Med ; 15(1): 7, 2023 01 26.
Article in English | MEDLINE | ID: mdl-36703164

ABSTRACT

BACKGROUND: Low-frequency variants play an important role in breast cancer (BC) susceptibility. Gene-based methods can increase power by combining multiple variants in the same gene and help identify target genes. METHODS: We evaluated the potential of gene-based aggregation in the Breast Cancer Association Consortium cohorts including 83,471 cases and 59,199 controls. Low-frequency variants were aggregated for individual genes' coding and regulatory regions. Association results in European ancestry samples were compared to single-marker association results in the same cohort. Gene-based associations were also combined in meta-analysis across individuals with European, Asian, African, and Latin American and Hispanic ancestry. RESULTS: In European ancestry samples, 14 genes were significantly associated (q < 0.05) with BC. Of those, two genes, FMNL3 (P = 6.11 × 10-6) and AC058822.1 (P = 1.47 × 10-4), represent new associations. High FMNL3 expression has previously been linked to poor prognosis in several other cancers. Meta-analysis of samples with diverse ancestry discovered further associations including established candidate genes ESR1 and CBLB. Furthermore, literature review and database query found further support for a biologically plausible link with cancer for genes CBLB, FMNL3, FGFR2, LSP1, MAP3K1, and SRGAP2C. CONCLUSIONS: Using extended gene-based aggregation tests including coding and regulatory variation, we report identification of plausible target genes for previously identified single-marker associations with BC as well as the discovery of novel genes implicated in BC development. Including multi ancestral cohorts in this study enabled the identification of otherwise missed disease associations as ESR1 (P = 1.31 × 10-5), demonstrating the importance of diversifying study cohorts.


Subject(s)
Breast Neoplasms , Humans , Female , Breast Neoplasms/genetics , Genetic Predisposition to Disease , Black People , Genetic Testing , Genome-Wide Association Study/methods , Polymorphism, Single Nucleotide , Formins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...