Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 150
Filter
1.
bioRxiv ; 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38712228

ABSTRACT

Genetic studies find hundreds of thousands of noncoding variants associated with psychiatric disorders. Massively parallel reporter assays (MPRAs) and in vivo transgenic mouse assays can be used to assay the impact of these variants. However, the relevance of MPRAs to in vivo function is unknown and transgenic assays suffer from low throughput. Here, we studied the utility of combining the two assays to study the impact of non-coding variants. We carried out an MPRA on over 50,000 sequences derived from enhancers validated in transgenic mouse assays and from multiple fetal neuronal ATAC-seq datasets. We also tested over 20,000 variants, including synthetic mutations in highly active neuronal enhancers and 177 common variants associated with psychiatric disorders. Variants with a high impact on MPRA activity were further tested in mice. We found a strong and specific correlation between MPRA and mouse neuronal enhancer activity including changes in neuronal enhancer activity in mouse embryos for variants with strong MPRA effects. Mouse assays also revealed pleiotropic variant effects that could not be observed in MPRA. Our work provides a large catalog of functional neuronal enhancers and variant effects and highlights the effectiveness of combining MPRAs and mouse transgenic assays.

2.
bioRxiv ; 2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38659854

ABSTRACT

The human genome contains millions of retrotransposons, several of which could become active due to somatic mutations having phenotypic consequences, including disease. However, it is not thoroughly understood how nucleotide changes in retrotransposons affect their jumping activity. Here, we developed a novel massively parallel jumping assay (MPJA) that can test the jumping potential of thousands of transposons en masse. We generated nucleotide variant library of selected four Alu retrotransposons containing 165,087 different haplotypes and tested them for their jumping ability using MPJA. We found 66,821 unique jumping haplotypes, allowing us to pinpoint domains and variants vital for transposition. Mapping these variants to the Alu-RNA secondary structure revealed stem-loop features that contribute to jumping potential. Combined, our work provides a novel high-throughput assay that assesses the ability of retrotransposons to jump and identifies nucleotide changes that have the potential to reactivate them in the human genome.

3.
Cell Rep ; 43(3): 113907, 2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38461417

ABSTRACT

Adolescent idiopathic scoliosis (AIS), a sideways curvature of the spine, is sexually dimorphic, with increased incidence in females. A genome-wide association study identified a female-specific AIS susceptibility locus near the PAX1 gene. Here, we use mouse enhancer assays, three mouse enhancer knockouts, and subsequent phenotypic analyses to characterize this region. Using mouse enhancer assays, we characterize a sequence, PEC7, which overlaps the AIS-associated variant, and find it to be active in the tail tip and intervertebral disc. Removal of PEC7 or Xe1, a known sclerotome enhancer nearby, or deletion of both sequences lead to a kinky tail phenotype only in the Xe1 and combined (Xe1+PEC7) knockouts, with only the latter showing a female sex dimorphic phenotype. Extensive phenotypic characterization of these mouse lines implicates several differentially expressed genes and estrogen signaling in the sex dimorphic bias. In summary, our work functionally characterizes an AIS-associated locus and dissects the mechanism for its sexual dimorphism.


Subject(s)
Scoliosis , Animals , Female , Mice , Genetic Predisposition to Disease , Genome-Wide Association Study , Scoliosis/genetics , Scoliosis/epidemiology , Tail , Transcription Factors/genetics
6.
Neuron ; 112(9): 1444-1455.e5, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38412857

ABSTRACT

Children diagnosed with autism spectrum disorder (ASD) commonly present with sensory hypersensitivity or abnormally strong reactions to sensory stimuli. Such hypersensitivity can be overwhelming, causing high levels of distress that contribute markedly to the negative aspects of the disorder. Here, we identify a mechanism that underlies hypersensitivity in a sensorimotor reflex found to be altered in humans and in mice with loss of function in the ASD risk-factor gene SCN2A. The cerebellum-dependent vestibulo-ocular reflex (VOR), which helps maintain one's gaze during movement, was hypersensitized due to deficits in cerebellar synaptic plasticity. Heterozygous loss of SCN2A-encoded NaV1.2 sodium channels in granule cells impaired high-frequency transmission to Purkinje cells and long-term potentiation, a form of synaptic plasticity important for modulating VOR gain. VOR plasticity could be rescued in mice via a CRISPR-activator approach that increases Scn2a expression, demonstrating that evaluation of a simple reflex can be used to assess and quantify successful therapeutic intervention.


Subject(s)
Autism Spectrum Disorder , Cerebellum , NAV1.2 Voltage-Gated Sodium Channel , Neuronal Plasticity , Animals , NAV1.2 Voltage-Gated Sodium Channel/genetics , NAV1.2 Voltage-Gated Sodium Channel/metabolism , Mice , Neuronal Plasticity/physiology , Cerebellum/metabolism , Autism Spectrum Disorder/genetics , Autism Spectrum Disorder/physiopathology , Humans , Reflex, Vestibulo-Ocular/physiology , Male , Purkinje Cells/metabolism , Mice, Inbred C57BL
7.
Sci Rep ; 14(1): 3936, 2024 02 16.
Article in English | MEDLINE | ID: mdl-38365907

ABSTRACT

Regulation of gene expression through enhancers is one of the major processes shaping the structure and function of the human brain during development. High-throughput assays have predicted thousands of enhancers involved in neurodevelopment, and confirming their activity through orthogonal functional assays is crucial. Here, we utilized Massively Parallel Reporter Assays (MPRAs) in stem cells and forebrain organoids to evaluate the activity of ~ 7000 gene-linked enhancers previously identified in human fetal tissues and brain organoids. We used a Gaussian mixture model to evaluate the contribution of background noise in the measured activity signal to confirm the activity of ~ 35% of the tested enhancers, with most showing temporal-specific activity, suggesting their evolving role in neurodevelopment. The temporal specificity was further supported by the correlation of activity with gene expression. Our findings provide a valuable gene regulatory resource to the scientific community.


Subject(s)
Gene Expression Regulation , Regulatory Sequences, Nucleic Acid , Humans , Organoids , Prosencephalon , Enhancer Elements, Genetic
8.
Nat Commun ; 15(1): 12, 2024 01 09.
Article in English | MEDLINE | ID: mdl-38195585

ABSTRACT

Frugivory evolved multiple times in mammals, including bats. However, the cellular and molecular components driving it remain largely unknown. Here, we use integrative single-cell sequencing (scRNA-seq and scATAC-seq) on insectivorous (Eptesicus fuscus; big brown bat) and frugivorous (Artibeus jamaicensis; Jamaican fruit bat) bat kidneys and pancreases and identify key cell population, gene expression and regulatory differences associated with the Jamaican fruit bat that also relate to human disease, particularly diabetes. We find a decrease in loop of Henle and an increase in collecting duct cells, and differentially active genes and regulatory elements involved in fluid and electrolyte balance in the Jamaican fruit bat kidney. The Jamaican fruit bat pancreas shows an increase in endocrine and a decrease in exocrine cells, and differences in genes and regulatory elements involved in insulin regulation. We also find that these frugivorous bats share several molecular characteristics with human diabetes. Combined, our work provides insights from a frugivorous mammal that could be leveraged for therapeutic purposes.


Subject(s)
Chiroptera , Diabetes Mellitus , Humans , Animals , Pancreas , Kidney , Epithelial Cells
9.
Nat Genet ; 56(2): 258-272, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38200130

ABSTRACT

Skin color is highly variable in Africans, yet little is known about the underlying molecular mechanism. Here we applied massively parallel reporter assays to screen 1,157 candidate variants influencing skin pigmentation in Africans and identified 165 single-nucleotide polymorphisms showing differential regulatory activities between alleles. We combine Hi-C, genome editing and melanin assays to identify regulatory elements for MFSD12, HMG20B, OCA2, MITF, LEF1, TRPS1, BLOC1S6 and CYB561A3 that impact melanin levels in vitro and modulate human skin color. We found that independent mutations in an OCA2 enhancer contribute to the evolution of human skin color diversity and detect signals of local adaptation at enhancers of MITF, LEF1 and TRPS1, which may contribute to the light skin color of Khoesan-speaking populations from Southern Africa. Additionally, we identified CYB561A3 as a novel pigmentation regulator that impacts genes involved in oxidative phosphorylation and melanogenesis. These results provide insights into the mechanisms underlying human skin color diversity and adaptive evolution.


Subject(s)
Albinism, Oculocutaneous , Melanins , Skin Pigmentation , Humans , Skin Pigmentation/genetics , Melanins/genetics , Alleles , Genomics , Pigmentation/genetics , Polymorphism, Single Nucleotide/genetics , Repressor Proteins/genetics
10.
Nucleic Acids Res ; 52(4): 1613-1627, 2024 Feb 28.
Article in English | MEDLINE | ID: mdl-38296821

ABSTRACT

The advent of perturbation-based massively parallel reporter assays (MPRAs) technique has facilitated the delineation of the roles of non-coding regulatory elements in orchestrating gene expression. However, computational efforts remain scant to evaluate and establish guidelines for sequence design strategies for perturbation MPRAs. In this study, we propose a framework for evaluating and comparing various perturbation strategies for MPRA experiments. Within this framework, we benchmark three different perturbation approaches from the perspectives of alteration in motif-based profiles, consistency of MPRA outputs, and robustness of models that predict the activities of putative regulatory motifs. While our analyses show very similar results across multiple benchmarking metrics, the predictive modeling for the approach involving random nucleotide shuffling shows significant robustness compared with the other two approaches. Thus, we recommend designing sequences by randomly shuffling the nucleotides of the perturbed site in perturbation-MPRA, followed by a coherence check to prevent the introduction of other variations of the target motifs. In summary, our evaluation framework and the benchmarking findings create a resource of computational pipelines and highlight the potential of perturbation-MPRA in predicting non-coding regulatory activities.


Subject(s)
Genetic Techniques , Regulatory Sequences, Nucleic Acid , Nucleotides
11.
Elife ; 122024 Jan 26.
Article in English | MEDLINE | ID: mdl-38277211

ABSTRACT

Adolescent idiopathic scoliosis (AIS) is a common and progressive spinal deformity in children that exhibits striking sexual dimorphism, with girls at more than fivefold greater risk of severe disease compared to boys. Despite its medical impact, the molecular mechanisms that drive AIS are largely unknown. We previously defined a female-specific AIS genetic risk locus in an enhancer near the PAX1 gene. Here, we sought to define the roles of PAX1 and newly identified AIS-associated genes in the developmental mechanism of AIS. In a genetic study of 10,519 individuals with AIS and 93,238 unaffected controls, significant association was identified with a variant in COL11A1 encoding collagen (α1) XI (rs3753841; NM_080629.2_c.4004C>T; p.(Pro1335Leu); p=7.07E-11, OR = 1.118). Using CRISPR mutagenesis we generated Pax1 knockout mice (Pax1-/-). In postnatal spines we found that PAX1 and collagen (α1) XI protein both localize within the intervertebral disc-vertebral junction region encompassing the growth plate, with less collagen (α1) XI detected in Pax1-/- spines compared to wild-type. By genetic targeting we found that wild-type Col11a1 expression in costal chondrocytes suppresses expression of Pax1 and of Mmp3, encoding the matrix metalloproteinase 3 enzyme implicated in matrix remodeling. However, the latter suppression was abrogated in the presence of the AIS-associated COL11A1P1335L mutant. Further, we found that either knockdown of the estrogen receptor gene Esr2 or tamoxifen treatment significantly altered Col11a1 and Mmp3 expression in chondrocytes. We propose a new molecular model of AIS pathogenesis wherein genetic variation and estrogen signaling increase disease susceptibility by altering a PAX1-COL11a1-MMP3 signaling axis in spinal chondrocytes.


Adolescent idiopathic scoliosis (AIS) is a twisting deformity of the spine that occurs during periods of rapid growth in children worldwide. Children with severe cases of AIS require surgery to stop it from getting worse, presenting a significant financial burden to health systems and families. Although AIS is known to cluster in families, its genetic causes and its inheritance pattern have remained elusive. Additionally, AIS is known to be more prevalent in females, a bias that has not been explained. Advances in techniques to study the genetics underlying diseases have revealed that certain variations that increase the risk of AIS affect cartilage and connective tissue. In humans, one such variation is near a gene called Pax1, and it is female-specific. The extracellular matrix is a network of proteins and other molecules in the space between cells that help connect tissues together, and it is particularly important in cartilage and other connective tissues. One of the main components of the extracellular matrix is collagen. Yu, Kanshour, Ushiki et al. hypothesized that changes in the extracellular matrix could affect the cartilage and connective tissues of the spine, leading to AIS. To show this, the scientists screened over 100,000 individuals and found that AIS is associated with variants in two genes coding for extracellular matrix proteins. One of these variants was found in a gene called Col11a1, which codes for one of the proteins that makes up collagen. To understand the relationship between Pax1 and Col11a1, Yu, Kanshour, Ushiki et al. genetically modified mice so that they would lack the Pax1 gene. In these mice, the activation of Col11a1 was reduced in the mouse spine. They also found that the form of Col11a1 associated with AIS could not suppress the activation of a gene called Mmp3 in mouse cartilage cells as effectively as unmutated Col11a1. Going one step further, the researchers found that lowering the levels of an estrogen receptor altered the activation patterns of Pax1, Col11a1, and Mmp3 in mouse cartilage cells. These findings suggest a possible mechanism for AIS, particularly in females. The findings of Yu, Kanshour, Ushiki et al. highlight that cartilage cells in the spine are particularly relevant in AIS. The results also point to specific molecules within the extracellular matrix as important for maintaining proper alignment in the spine when children are growing rapidly. This information may guide future therapies aimed at maintaining healthy spinal cells in adolescent children, particularly girls.


Subject(s)
Scoliosis , Male , Animals , Child , Mice , Humans , Female , Adolescent , Scoliosis/genetics , Matrix Metalloproteinase 3/genetics , Spine , Transcription Factors/genetics , Collagen/genetics , Genetic Variation , Collagen Type XI/genetics
12.
Nat Commun ; 14(1): 8111, 2023 Dec 07.
Article in English | MEDLINE | ID: mdl-38062027

ABSTRACT

Topological associating domains (TADs) are self-interacting genomic units crucial for shaping gene regulation patterns. Despite their importance, the extent of their evolutionary conservation and its functional implications remain largely unknown. In this study, we generate Hi-C and ChIP-seq data and compare TAD organization across four primate and four rodent species and characterize the genetic and epigenetic properties of TAD boundaries in correspondence to their evolutionary conservation. We find 14% of all human TAD boundaries to be shared among all eight species (ultraconserved), while 15% are human-specific. Ultraconserved TAD boundaries have stronger insulation strength, CTCF binding, and enrichment of older retrotransposons compared to species-specific boundaries. CRISPR-Cas9 knockouts of an ultraconserved boundary in a mouse model lead to tissue-specific gene expression changes and morphological phenotypes. Deletion of a human-specific boundary near the autism-related AUTS2 gene results in the upregulation of this gene in neurons. Overall, our study provides pertinent TAD boundary evolutionary conservation annotations and showcases the functional importance of TAD evolution.


Subject(s)
Genome , Genomics , Animals , Mice , Humans , Gene Expression Regulation , Epigenomics , Chromatin Immunoprecipitation Sequencing , Chromatin , Mammals/genetics
13.
bioRxiv ; 2023 Nov 22.
Article in English | MEDLINE | ID: mdl-38045264

ABSTRACT

Massively parallel reporter assays (MPRAs) represent a set of high-throughput technologies that measure the functional effects of thousands of sequences/variants on gene regulatory activity. There are several different variations of MPRA technology and they are used for numerous applications, including regulatory element discovery, variant effect measurement, saturation mutagenesis, synthetic regulatory element generation or characterization of evolutionary gene regulatory differences. Despite their many designs and uses, there is no comprehensive database that incorporates the results of these experiments. To address this, we developed MPRAbase, a manually curated database that currently harbors 129 experiments, encompassing 17,718,677 elements tested across 35 cell types and 4 organisms. The MPRAbase web interface (http://www.mprabase.com) serves as a centralized user-friendly repository to download existing MPRA data for independent analysis and is designed with the ability to allow researchers to share their published data for rapid dissemination to the community.

15.
bioRxiv ; 2023 Sep 29.
Article in English | MEDLINE | ID: mdl-37808807

ABSTRACT

The advent of the perturbation-based massively parallel reporter assays (MPRAs) technique has enabled delineating of the roles of non-coding regulatory elements in orchestrating gene expression. However, computational efforts remain scant to evaluate and establish guidelines for sequence design strategies for perturbation MPRAs. Here, we propose a framework for evaluating and comparing various perturbation strategies for MPRA experiments. Under this framework, we benchmark three different perturbation approaches from the perspectives of alteration in motif-based profiles, consistency of MPRA outputs, and robustness of models that predict the activities of putative regulatory motifs. Although our analyses show similar while significant results in multiple metrics, the method of randomly shuffling nucleotides outperform the other two methods. Thus, we still recommend designing sequences by randomly shuffling the nucleotides of the perturbed site in perturbation-MPRA. The evaluation framework, together with the benchmarking findings in our work, creates a resource of computational pipelines and illustrates the promise of perturbation-MPRA for predicting non-coding regulatory activities.

16.
Nature ; 623(7985): 183-192, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37853125

ABSTRACT

The DNA damage response is essential to safeguard genome integrity. Although the contribution of chromatin in DNA repair has been investigated1,2, the contribution of chromosome folding to these processes remains unclear3. Here we report that, after the production of double-stranded breaks (DSBs) in mammalian cells, ATM drives the formation of a new chromatin compartment (D compartment) through the clustering of damaged topologically associating domains, decorated with γH2AX and 53BP1. This compartment forms by a mechanism that is consistent with polymer-polymer phase separation rather than liquid-liquid phase separation. The D compartment arises mostly in G1 phase, is independent of cohesin and is enhanced after pharmacological inhibition of DNA-dependent protein kinase (DNA-PK) or R-loop accumulation. Importantly, R-loop-enriched DNA-damage-responsive genes physically localize to the D compartment, and this contributes to their optimal activation, providing a function for DSB clustering in the DNA damage response. However, DSB-induced chromosome reorganization comes at the expense of an increased rate of translocations, also observed in cancer genomes. Overall, we characterize how DSB-induced compartmentalization orchestrates the DNA damage response and highlight the critical impact of chromosome architecture in genomic instability.


Subject(s)
Cell Compartmentation , Chromatin , DNA Damage , Animals , Ataxia Telangiectasia Mutated Proteins/metabolism , Cell Line , Chromatin/genetics , Chromatin/metabolism , DNA Breaks, Double-Stranded , DNA Repair , DNA-Activated Protein Kinase/metabolism , G1 Phase , Histones/metabolism , Neoplasms/genetics , R-Loop Structures , Tumor Suppressor p53-Binding Protein 1/metabolism
17.
iScience ; 26(10): 107767, 2023 Oct 20.
Article in English | MEDLINE | ID: mdl-37731614

ABSTRACT

Little is known about the persistence of human milk anti-SARS-CoV-2 antibodies after 2nd and 3rd vaccine doses and infection following 3rd dose. In this study, human milk, saliva, and blood samples were collected from 33 lactating individuals before and after vaccination and infection. Antibody levels were measured using ELISA and symptoms were assessed using questionnaires. We found that after vaccination, milk anti-SARS-CoV-2 antibodies persisted for up to 8 months. In addition, distinct patterns of human milk IgA and IgG production and higher milk RBD-blocking activity was observed after infection compared to 3-dose vaccination. Infected mothers reported more symptoms than vaccinated mothers. We examined the persistence of milk antibodies in infant saliva after breastfeeding and found that IgA was more abundant compared to IgG. Our results emphasize the importance of improving the secretion of IgA antibodies to human milk after vaccination to improve the protection of breastfeeding infants.

18.
bioRxiv ; 2023 Aug 14.
Article in English | MEDLINE | ID: mdl-37645832

ABSTRACT

Regulation of gene expression through enhancers is one of the major processes shaping the structure and function of the human brain during development. High-throughput assays have predicted thousands of enhancers involved in neurodevelopment, and confirming their activity through orthogonal functional assays is crucial. Here, we utilized Massively Parallel Reporter Assays (MPRAs) in stem cells and forebrain organoids to evaluate the activity of ~7,000 gene-linked enhancers previously identified in human fetal tissues and brain organoids. We used a Gaussian mixture model to evaluate the contribution of background noise in the measured activity signal to confirm the activity of ~35% of the tested enhancers, with most showing temporal-specific activity, suggesting their evolving role in neurodevelopment. The temporal specificity was further supported by the correlation of activity with gene expression. Our findings provide a valuable gene regulatory resource to the scientific community.

19.
bioRxiv ; 2023 Nov 22.
Article in English | MEDLINE | ID: mdl-37292598

ABSTRACT

Adolescent idiopathic scoliosis (AIS) is a common and progressive spinal deformity in children that exhibits striking sexual dimorphism, with girls at more than five-fold greater risk of severe disease compared to boys. Despite its medical impact, the molecular mechanisms that drive AIS are largely unknown. We previously defined a female-specific AIS genetic risk locus in an enhancer near the PAX1 gene. Here we sought to define the roles of PAX1 and newly-identified AIS-associated genes in the developmental mechanism of AIS. In a genetic study of 10,519 individuals with AIS and 93,238 unaffected controls, significant association was identified with a variant in COL11A1 encoding collagen (α1) XI (rs3753841; NM_080629.2_c.4004C>T; p.(Pro1335Leu); P=7.07e-11, OR=1.118). Using CRISPR mutagenesis we generated Pax1 knockout mice (Pax1-/-). In postnatal spines we found that PAX1 and collagen (α1) XI protein both localize within the intervertebral disc (IVD)-vertebral junction region encompassing the growth plate, with less collagen (α1) XI detected in Pax1-/- spines compared to wildtype. By genetic targeting we found that wildtype Col11a1 expression in costal chondrocytes suppresses expression of Pax1 and of Mmp3, encoding the matrix metalloproteinase 3 enzyme implicated in matrix remodeling. However, this suppression was abrogated in the presence of the AIS-associated COL11A1P1335L mutant. Further, we found that either knockdown of the estrogen receptor gene Esr2, or tamoxifen treatment, significantly altered Col11a1 and Mmp3 expression in chondrocytes. We propose a new molecular model of AIS pathogenesis wherein genetic variation and estrogen signaling increase disease susceptibility by altering a Pax1-Col11a1-Mmp3 signaling axis in spinal chondrocytes.

20.
bioRxiv ; 2023 Jun 07.
Article in English | MEDLINE | ID: mdl-37333267

ABSTRACT

Children diagnosed with autism spectrum disorder (ASD) commonly present with sensory hypersensitivity, or abnormally strong reactions to sensory stimuli. Such hypersensitivity can be overwhelming, causing high levels of distress that contribute markedly to the negative aspects of the disorder. Here, we identify the mechanisms that underlie hypersensitivity in a sensorimotor reflex found to be altered in humans and in mice with loss-of-function in the ASD risk-factor gene SCN2A. The cerebellum-dependent vestibulo-ocular reflex (VOR), which helps maintain one's gaze during movement, was hypersensitized due to deficits in cerebellar synaptic plasticity. Heterozygous loss of SCN2A-encoded NaV1.2 sodium channels in granule cells impaired high-frequency transmission to Purkinje cells and long-term potentiation, a form of synaptic plasticity important for modulating VOR gain. VOR plasticity could be rescued in adolescent mice via a CRISPR-activator approach that increases Scn2a expression, highlighting how evaluation of simple reflexes can be used as quantitative readout of therapeutic interventions.

SELECTION OF CITATIONS
SEARCH DETAIL
...