Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Sci Pollut Res Int ; 31(3): 4012-4024, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38097829

ABSTRACT

In developing nations, solid residential fuels are the major sources of primary energy for various domestic activities. To date, the emission inventory of inorganic trace gases over National Capital Territory (NCT) was prepared using either default or country-specific emission factors. In this paper, we report (for the first time) the spatial variation of emission factors (EFs) of inorganic trace gases (SO2, NO, NO2, CO, CO2, and CH4) from the residential fuels used in slums and rural areas of NCT determined using dilution chamber in the laboratory. 147 residential fuel samples, including fuelwood, dung cake, crop residues, coal, etc., were collected at 149 NCT locations out of 675 slum clusters and 146 rural villages. The range of EF(s) of SO2 (0.02 ± 0.01 to 0.04 ± 0.01 g kg-1), CH4 (0.10 to 0.34 g kg-1), NO2 (0.01 to 0.02 g kg-1) is lower than the CO (3.55 ± 1.72 to 6.07 ± 1.53 g kg-1) and CO2 (0 to 129.45 ± 46.94 g kg-1). The north and north west districts of NCT are emission hotspots for CH4, NO, and NO2 emissions, whereas, the southern and northern areas of NCT are for CO2. These citywide emission inventories (0.05° × 0.05°) of inorganic trace gases are prepared using laboratory-determined EFs and available consumption data determined by recent survey information. Among solid residential fuels, fuel wood, and dung cake are two major contributors to inorganic trace gases in NCT.


Subject(s)
Air Pollutants , Air Pollutants/analysis , Gases , Carbon Dioxide/analysis , Nitrogen Dioxide , Coal
2.
Environ Sci Pollut Res Int ; 29(12): 17892-17918, 2022 Mar.
Article in English | MEDLINE | ID: mdl-34686959

ABSTRACT

In the present study, total suspended particulate matter (TSP) samples were collected at 47 different sites (47 grids of 5 × 5 km2 area) of Delhi during winter (January-February 2019) in campaign mode. To understand the spatial variation of sources, TSP samples were analyzed for chemical compositions including carbonaceous species [organic carbon (OC), elemental carbon (EC), and water-soluble organic carbon (WSOC)], water-soluble total nitrogen (WSTN), water-soluble inorganic nitrogen (WSIN), polycyclic aromatic hydrocarbons (16 PAHs), water-soluble inorganic species (WSIS) (F-, Cl-, SO42-, NO2-, NO3-, PO43-, NH4+, Ca2+, Mg2+, Na+, and K+), and major and minor trace elements (B, Na, Mg, Al, P, S, Cl, K, Ca, Ti, Fe, Zn, Cr, Mn, Cu, As, Pd, F, and Ag). During the campaign, the maximum concentration of several components of TSP (996 µg/m3) was recorded at the Rana Pratap Bagh area, representing a pollution hotspot of Delhi. The maximum concentrations of PAHs were recorded at Udhyog Nagar, a region close to heavily loaded diesel vehicles, small rubber factories, and waste burning areas. Higher content of Cl- and Cl-/Na+ ratio (>1.7) suggests the presence of nonmarine anthropogenic sources of Cl- over Delhi. Minimum concentrations of OC, EC, WSOC, PAHs, and WSIS in TSP were observed at Kalkaji, representing the least polluted area in Delhi. Enrichment factor <5.0 at several locations and a significant correlation of Al with Mg, Fe, Ti, and Ca and C/N ratio indicated the abundance of mineral/crustal dust in TSP over Delhi. Principal component analysis (PCA) was also performed for the source apportionment of TSP, and extracted soil dust was found to be the major contributor to TSP, followed by biomass burning, open waste burning, secondary aerosol, and vehicular emissions.


Subject(s)
Air Pollutants , Particulate Matter , Aerosols/analysis , Air Pollutants/analysis , Environmental Monitoring , India , Particle Size , Particulate Matter/analysis , Seasons , Vehicle Emissions/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...