Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
CPT Pharmacometrics Syst Pharmacol ; 10(5): 467-477, 2021 05.
Article in English | MEDLINE | ID: mdl-33704919

ABSTRACT

Renal clearance of many drugs is mediated by renal organic anion transporters OAT1/3 and inhibition of these transporters may lead to drug-drug interactions (DDIs). Pyridoxic acid (PDA) and homovanillic acid (HVA) were indicated as potential biomarkers of OAT1/3. The objective of this study was to develop a population pharmacokinetic model for PDA and HVA to support biomarker qualification. Simultaneous fitting of biomarker plasma and urine data in the presence and absence of potent OAT1/3 inhibitor (probenecid, 500 mg every 6 h) was performed. The impact of study design (multiple vs. single dose of OAT1/3 inhibitor) and ability to detect interactions in the presence of weak/moderate OAT1/3 inhibitors was investigated, together with corresponding power calculations. The population models developed successfully described biomarker baseline and PDA/HVA OAT1/3-mediated interaction data. No prominent effect of circadian rhythm on PDA and HVA individual baseline levels was evident. Renal elimination contributed greater than 80% to total clearance of both endogenous biomarkers investigated. Estimated probenecid unbound in vivo OAT inhibitory constant was up to 6.4-fold lower than in vitro values obtained with PDA as a probe. The PDA model was successfully verified against independent literature reported datasets. No significant difference in power of DDI detection was found between multiple and single dose study design when using the same total daily dose of 2000 mg probenecid. Model-based simulations and power calculations confirmed sensitivity and robustness of plasma PDA data to identify weak, moderate, and strong OAT1/3 inhibitors in an adequately powered clinical study to support optimal design of prospective clinical OAT1/3 interaction studies.


Subject(s)
Computer Simulation , Drug Interactions , Homovanillic Acid/pharmacokinetics , Organic Anion Transporters, Sodium-Independent/metabolism , Probenecid/pharmacokinetics , Pyridoxic Acid/pharmacokinetics , Biomarkers/metabolism , Cross-Over Studies , Female , Healthy Volunteers , Homovanillic Acid/blood , Humans , Male , Organic Anion Transporters, Sodium-Independent/antagonists & inhibitors , Probenecid/blood , Pyridoxic Acid/blood
2.
Biopharm Drug Dispos ; 42(4): 107-117, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33325034

ABSTRACT

We assess the advancement of physiologically based pharmacokinetic (PBPK) modeling and simulation (M&S) over the last 20 years (start of 2000 to end of 2019) focusing on the trends in each decade with the relative contributions from different organizations, areas of applications, and software tools used. Unlike many of the previous publications which focused on regulatory applications, our analysis is based on PBPK publications in peer-reviewed journals based on a large sample (>700 original articles). We estimated a rate of growth for PBPK (>40 fold/20 years) that was much steeper than the general pharmacokinetic modeling (<3 fold/20 years) or overall scientific publications (∼3 fold/20 years). The analyses demonstrated that contrary to commonly held belief, commercial specialized PBPK platforms with graphical-user interface were a much more popular choice than open-source alternatives even within academic organizations. These platforms constituted 81% of the whole set of the sample we assessed. The major PBPK applications (top 3) were associated with the study design, predicting formulation effects, and metabolic drug-drug interactions, while studying the fate of drugs in special populations, predicting kinetics in early drug development, and investigating transporter drug interactions have increased proportionally over the last decade. The proportions of application areas based on published research were distinctively different from those shown previously for the regulatory submissions and impact on labels. This may demonstrate the lag time between the research applications versus verified usage within the regulatory framework. The report showed the trend of overall PBPK publications in pharmacology drug development from the past 2 decades stratified by the organizations involved, software used, and area of applications. The analysis showed a more rapid increase in PBPK than that of the pharmacokinetic space itself with an equal contribution from academia and industry. By establishing and recording the journey of PBPK modeling in the past and looking at its current status, the analysis can be used for devising plans based on the anticipated trajectory of future regulatory applications.


Subject(s)
Computer Simulation/trends , Drug Development/trends , Models, Biological , Animals , Drug Interactions , Humans , Membrane Transport Proteins/metabolism , Pharmaceutical Preparations/metabolism , Pharmacokinetics
3.
CPT Pharmacometrics Syst Pharmacol ; 9(11): 617-627, 2020 11.
Article in English | MEDLINE | ID: mdl-32989926

ABSTRACT

The gut wall consists of many biological elements, including enterocytes. Rapid turnover, a prominent feature of the enterocytes, has generally been ignored in the development of enterocyte-targeting drugs, although it has a comparable rate to other kinetic rates. Here, we investigated the impact of enterocyte turnover on the pharmacodynamics of enterocyte-targeting drugs by applying a model accounting for turnover of enterocytes and target proteins. Simulations showed that the pharmacodynamics depend on enterocyte lifespan when drug-target affinity is strong and half-life of target protein is long. Interindividual variability of enterocyte lifespan, which can be amplified by disease conditions, has a substantial impact on the variability of response. However, our comprehensive literature search showed that the enterocyte turnover causes a marginal impact on currently approved enterocyte-targeting drugs due to their relatively weak target affinities. This study proposes a model-informed drug development approach for selecting enterocyte-targeting drugs and their optimal dosage regimens.


Subject(s)
Drug Development/methods , Enterocytes/enzymology , Gastrointestinal Diseases/drug therapy , Intestinal Mucosa/metabolism , Administration, Oral , Biological Variation, Population , Clinical Trials as Topic , Computer Simulation , Drug Compounding/methods , Drug Delivery Systems/methods , Enterocytes/drug effects , Half-Life , Humans , Molecular Targeted Therapy/methods , Pharmacokinetics , Predictive Value of Tests , Sensitivity and Specificity , Time Factors
4.
Eur J Pharm Biopharm ; 156: 50-63, 2020 Nov.
Article in English | MEDLINE | ID: mdl-32805361

ABSTRACT

Oral drug absorption is a complex process depending on many factors, including the physicochemical properties of the drug, formulation characteristics and their interplay with gastrointestinal physiology and biology. Physiological-based pharmacokinetic (PBPK) models integrate all available information on gastro-intestinal system with drug and formulation data to predict oral drug absorption. The latter together with in vitro-in vivo extrapolation and other preclinical data on drug disposition can be used to predict plasma concentration-time profiles in silico. Despite recent successes of PBPK in many areas of drug development, an improvement in their utility for evaluating oral absorption is much needed. Current status of predictive performance, within the confinement of commonly available in vitro data on drugs and formulations alongside systems information, were tested using 3 PBPK software packages (GI-Sim (ver.4.1), Simcyp® Simulator (ver.15.0.86.0), and GastroPlus™ (ver.9.0.00xx)). This was part of the Innovative Medicines Initiative (IMI) Oral Biopharmaceutics Tools (OrBiTo) project. Fifty eight active pharmaceutical ingredients (APIs) were qualified from the OrBiTo database to be part of the investigation based on a priori set criteria on availability of minimum necessary information to allow modelling exercise. The set entailed over 200 human clinical studies with over 700 study arms. These were simulated using input parameters which had been harmonised by a panel of experts across different software packages prior to conduct of any simulation. Overall prediction performance and software packages comparison were evaluated based on performance indicators (Fold error (FE), Average fold error (AFE) and absolute average fold error (AAFE)) of pharmacokinetic (PK) parameters. On average, PK parameters (Area Under the Concentration-time curve (AUC0-tlast), Maximal concentration (Cmax), half-life (t1/2)) were predicted with AFE values between 1.11 and 1.97. Variability in FEs of these PK parameters was relatively high with AAFE values ranging from 2.08 to 2.74. Around half of the simulations were within the 2-fold error for AUC0-tlast and around 90% of the simulations were within 10-fold error for AUC0-tlast. Oral bioavailability (Foral) predictions, which were limited to 19 APIs having intravenous (i.v.) human data, showed AFE and AAFE of values 1.37 and 1.75 respectively. Across different APIs, AFE of AUC0-tlast predictions were between 0.22 and 22.76 with 70% of the APIs showing an AFE > 1. When compared across different formulations and routes of administration, AUC0-tlast for oral controlled release and i.v. administration were better predicted than that for oral immediate release formulations. Average predictive performance did not clearly differ between software packages but some APIs showed a high level of variability in predictive performance across different software packages. This variability could be related to several factors such as compound specific properties, the quality and availability of information, and errors in scaling from in vitro and preclinical in vivo data to human in vivo behaviour which will be explored further. Results were compared with previous similar exercise when the input data selection was carried by the modeller rather than a panel of experts on each in vitro test. Overall, average predictive performance was increased as reflected in smaller AAFE value of 2.8 as compared to AAFE value of 3.8 in case of previous exercise.


Subject(s)
Biopharmaceutics/standards , Data Analysis , Intestinal Absorption/drug effects , Models, Biological , Pharmaceutical Preparations/metabolism , Software/standards , Administration, Oral , Biopharmaceutics/methods , Clinical Trials as Topic/methods , Clinical Trials as Topic/standards , Databases, Factual/standards , Forecasting , Humans , Intestinal Absorption/physiology , Pharmaceutical Preparations/administration & dosage
5.
BMC Microbiol ; 16(1): 205, 2016 09 06.
Article in English | MEDLINE | ID: mdl-27599570

ABSTRACT

BACKGROUND: This study evaluated how dosing regimen for intramuscularly-administered ampicillin, composition of Escherichia coli strains with regard to ampicillin susceptibility, and excretion of bacteria from the intestine affected the level of resistance among Escherichia coli strains in the intestine of nursery pigs. It also examined the dynamics of the composition of bacterial strains during and after the treatment. The growth responses of strains to ampicillin concentrations were determined using in vitro growth curves. Using these results as input data, growth predictions were generated using a mathematical model to simulate the competitive growth of E. coli strains in a pig intestine under specified plasma concentration profiles of ampicillin. RESULTS: In vitro growth results demonstrated that the resistant strains did not carry a fitness cost for their resistance, and that the most susceptible strains were more affected by increasing concentrations of antibiotics that the rest of the strains. The modeling revealed that short treatment duration resulted in lower levels of resistance and that dosing frequency did not substantially influence the growth of resistant strains. Resistance levels were found to be sensitive to the number of competing strains, and this effect was enhanced by longer duration of treatment. High excretion of bacteria from the intestine favored resistant strains over sensitive strains, but at the same time it resulted in a faster return to pre-treatment levels after the treatment ended. When the duration of high excretion was set to be limited to the treatment time (i.e. the treatment was assumed to result in a cure of diarrhea) resistant strains required longer time to reach the previous level. CONCLUSION: No fitness cost was found to be associated with ampicillin resistance in E. coli. Besides dosing factors, epidemiological factors (such as number of competing strains and bacterial excretion) influenced resistance development and need to be considered further in relation to optimal treatment strategies. The modeling approach used in the study is generic, and could be used for prediction of the effect of treatment with other drugs and other administration routes for effect on resistance development in the intestine of pigs.


Subject(s)
Ampicillin/pharmacology , Ampicillin/pharmacokinetics , Escherichia coli Infections/drug therapy , Escherichia coli/drug effects , Escherichia coli/growth & development , Escherichia coli/pathogenicity , Intestines/microbiology , Ampicillin/administration & dosage , Ampicillin/blood , Animals , Anti-Bacterial Agents/administration & dosage , Anti-Bacterial Agents/blood , Anti-Bacterial Agents/pharmacokinetics , Anti-Bacterial Agents/pharmacology , Bacterial Load , Disease Models, Animal , Dose-Response Relationship, Drug , Drug Resistance, Bacterial/drug effects , Escherichia coli Infections/microbiology , Feces/microbiology , Injections, Intramuscular/methods , Microbial Sensitivity Tests/methods , Models, Theoretical , Swine , Time Factors
6.
BMC Microbiol ; 16(1): 118, 2016 06 23.
Article in English | MEDLINE | ID: mdl-27338861

ABSTRACT

BACKGROUND: Combination treatment is increasingly used to fight infections caused by bacteria resistant to two or more antimicrobials. While multiple studies have evaluated treatment strategies to minimize the emergence of resistant strains for single antimicrobial treatment, fewer studies have considered combination treatments. The current study modeled bacterial growth in the intestine of pigs after intramuscular combination treatment (i.e. using two antibiotics simultaneously) and sequential treatments (i.e. alternating between two antibiotics) in order to identify the factors that favor the sensitive fraction of the commensal flora. Growth parameters for competing bacterial strains were estimated from the combined in vitro pharmacodynamic effect of two antimicrobials using the relationship between concentration and net bacterial growth rate. Predictions of in vivo bacterial growth were generated by a mathematical model of the competitive growth of multiple strains of Escherichia coli. RESULTS: Simulation studies showed that sequential use of tetracycline and ampicillin reduced the level of double resistance, when compared to the combination treatment. The effect of the cycling frequency (how frequently antibiotics are alternated in a sequential treatment) of the two drugs was dependent upon the order in which the two drugs were used. CONCLUSION: Sequential treatment was more effective in preventing the growth of resistant strains when compared to the combination treatment. The cycling frequency did not play a role in suppressing the growth of resistant strains, but the specific order of the two antimicrobials did. Predictions made from the study could be used to redesign multidrug treatment strategies not only for intramuscular treatment in pigs, but also for other dosing routes.


Subject(s)
Anti-Bacterial Agents/pharmacology , Bacteria/drug effects , Escherichia coli Infections/drug therapy , Ampicillin/pharmacokinetics , Ampicillin/pharmacology , Animals , Anti-Bacterial Agents/pharmacokinetics , Bacteria/growth & development , Bacterial Load/drug effects , Disease Models, Animal , Drug Resistance, Multiple, Bacterial , Drug Therapy, Combination , Escherichia coli/drug effects , Escherichia coli/growth & development , Escherichia coli Infections/metabolism , Escherichia coli Infections/microbiology , Injections, Intramuscular , Intestines/microbiology , Microbial Sensitivity Tests , Swine , Tetracycline/pharmacokinetics , Tetracycline/pharmacology
7.
Acta Vet Scand ; 57: 79, 2015 Nov 24.
Article in English | MEDLINE | ID: mdl-26603151

ABSTRACT

BACKGROUND: The complex relationship between drug concentrations and bacterial growth rates require not only the minimum inhibitory concentration but also other parameters to capture the dynamic nature of the relationship. To analyse this relationship between tetracycline concentration and growth of Escherichia coli representative of those found in the Danish pig population, we compared the growth of 50 randomly selected strains. The observed net growth rates were used to describe the in vitro pharmacodynamic relationship between drug concentration and net growth rate based on E max model with three parameters: maximum net growth rate (amax); concentration for a half-maximal response (E max); and the Hill coefficient (γ). RESULTS: The net growth rate in the absence of antibiotic did not differ between susceptible and resistant isolates (P = 0.97). The net growth rate decreased with increasing tetracycline concentrations, and this decline was greater in susceptible strains than resistant strains. The lag phase, defined as the time needed for the strain to reach an OD600 value of 0.01, increased exponentially with increasing tetracycline concentration. The pharmacodynamic parameters confirmed that the αmax between susceptible and resistant strains in the absence of a drug was not different. EC 50 increased linearly with MIC on a log-log scale, and γ was different between susceptible and resistant strains. CONCLUSIONS: The in vitro model parameters described the inhibition effect of tetracycline on E. coli when strains were exposed to a wide range of tetracycline concentrations. These parameters, along with in vivo pharmacokinetic data, may be useful in mathematical models to predict in vivo competitive growth of many different strains and for development of optimal dosing regimens for preventing selection of resistance.


Subject(s)
Anti-Bacterial Agents/pharmacology , Escherichia coli/drug effects , Models, Biological , Tetracycline/pharmacology , Animals , Swine/microbiology
8.
Antimicrob Agents Chemother ; 59(3): 1634-42, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25547361

ABSTRACT

High instances of antimicrobial resistance are linked to both routine and excessive antimicrobial use, but excessive or inappropriate use represents an unnecessary risk. The competitive growth advantages of resistant bacteria may be amplified by the strain dynamics; in particular, the extent to which resistant strains outcompete susceptible strains under antimicrobial pressure may depend not only on the antimicrobial treatment strategies but also on the epidemiological parameters, such as the composition of the bacterial strains in a pig. This study evaluated how variation in the dosing protocol for intramuscular administration of tetracycline and the composition of bacterial strains in a pig affect the level of resistance in the intestine of a pig. Predictions were generated by a mathematical model of competitive growth of Escherichia coli strains in pigs under specified plasma concentration profiles of tetracycline. All dosing regimens result in a clear growth advantage for resistant strains. Short treatment duration was found to be preferable, since it allowed less time for resistant strains to outcompete the susceptible ones. Dosing frequency appeared to be ineffective at reducing the resistance levels. The number of competing strains had no apparent effect on the resistance level during treatment, but possession of fewer strains reduced the time to reach equilibrium after the end of treatment. To sum up, epidemiological parameters may have more profound influence on growth dynamics than dosing regimens and should be considered when designing improved treatment protocols.


Subject(s)
Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/pharmacokinetics , Drug Resistance, Multiple, Bacterial/drug effects , Tetracycline/pharmacology , Tetracycline/pharmacokinetics , Animals , Clinical Protocols , Escherichia coli/drug effects , Escherichia coli Infections/drug therapy , Injections, Intramuscular/methods , Microbial Sensitivity Tests/methods , Swine
SELECTION OF CITATIONS
SEARCH DETAIL
...