Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Electrophoresis ; 45(5-6): 557-572, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38161236

ABSTRACT

We explore a bioinspired approach to design tailored functionalized capillary electrophoresis (CE) surfaces based on covalent grafting for biomolecules analysis. First, the approach aims to overcome well-known common obstacles in CE protein analysis affecting considerably the CE performance (asymmetry, resolution, and repeatability) such as the unspecific adsorption on fused silica surface and the lack of control of electroosmotic flow (EOF). Then, our approach, which relies on new amino-amide mimic hybrid precursors synthesized by silylation of amino-amides (Si-AA) derivatives with 3-isocyanatopropyltriethoxysilane, aims to recapitulate the diversity of protein-protein interactions (π-π stacking, ionic, Van der Waals…) found in physiological condition (bioinspired approach) to improve the performance of CE protein analysis (electrochromatography). As a proof of concept, these silylated Si-AA (tyrosinamide silylation, serinamide silylation, argininamide silylation, leucinamide silylation, and isoglutamine silylation acid) have been covalently grafted in physiological conditions in different amount on bare fused silica capillary giving rise to a biomimetic coating and allowing both the modulation of EOF and protein-surface interactions. The analytical performances of amino-amide functionalized capillaries were assessed using lysozyme, cytochrome C and ribonuclease A and compared to traditional capillary coatings poly(ethylene oxide), poly(diallyldimethylammonium chloride), and sodium poly(styrenesulfonate). EOF, protein adsorption rate, protein retention factor k, and selectivity were determined for each coating. All results obtained showed this approach allowed to modulate the EOF, reduce unspecific adsorption, and generate specific interactions with proteins by varying the nature and the amount of Si-AA in the functionalization mixture.


Subject(s)
Amides , Electroosmosis , Electrophoresis, Capillary/methods , Polyethylene Glycols/chemistry , Proteins , Silicon Dioxide/chemistry
2.
J Mol Struct ; : 134135, 2022 Sep 09.
Article in English | MEDLINE | ID: mdl-36101881

ABSTRACT

Analogs of pyrimidine and 1,3,4-oxadiazole are two well established class of molecules proven as potent antiviral and anticancer agents in the pharmaceutical industry. We envisioned designing new molecules where these two heterocycles were conjugated with the goal of enhancing biological activity. In this vein, we synthesized a series of novel pyrimidine-1,3,4-oxadiazole conjugated hybrid molecules as potential anticancer and antiviral agents. Herein, we present a new design for 5-fluorocytosine-1,3,4-oxadiazole hybrids (5a-h) connected via a methylene bridge. An efficient synthesis of new derivatives was established, and all compounds were fully characterized by NMR and MS. Eight compounds were evaluated for their cytotoxic activity against fibrosarcoma (HT-1080), breast (MCF-7 and MDA-MB-231), lung carcinoma (A-549), and for their antiviral activity against SARS-CoV-2. Among all compounds tested, the compound 5e showed marked growth inhibition against all cell lines tested, particularly in HT-1080, with IC50 values of 19.56 µM. Meanwhile, all tested compounds showed no anti-SARS-CoV-2 activity, with EC50 >100 µM. The mechanism of cell death was investigated using Annexin V staining, caspase-3/7 activity, and analysis of cell cycle progression. The compound 5e induced apoptosis by the activation of caspase-3/7 and cell-cycle arrest in HT-1080 and A-549 cells at the G2M phase. The molecular docking suggested that the compound 5e activated caspase-3 via the formation of a stable complex protein-ligand.

3.
Arch Pharm (Weinheim) ; 354(10): e2100146, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34128255

ABSTRACT

A new series of furo[2,3-d]pyrimidine-1,3,4-oxadiazole hybrid derivatives were synthesized via an environmentally friendly, multistep synthetic tool and a one-pot Songoashira-heterocyclization protocol using, for the first time, nanostructured palladium pyrophosphate (Na2 PdP2 O7 ) as a heterogeneous catalyst. Compounds 9a-c exhibited broad-spectrum activity with low micromolar EC50 values toward wild and mutant varicella-zoster virus (VZV) strains. Compound 9b was up to threefold more potent than the reference drug acyclovir against thymidine kinase-deficient VZV strains. Importantly, derivative 9b was not cytostatic at the maximum tested concentration (CC50 > 100 µM) and had an acceptable selectivity index value of up to 7.8. Moreover, all synthesized 1,3,4-oxadiazole hybrids were evaluated for their cytotoxic activity in four human cancer cell lines: fibrosarcoma (HT-1080), breast (MCF-7 and MDA-MB-231), and lung carcinoma (A549). Data showed that compound 8f exhibits moderate cytotoxicity, with IC50 values ranging from 13.89 to 19.43 µM. Besides, compound 8f induced apoptosis through caspase 3/7 activation, cell death independently of the mitochondrial pathway, and cell cycle arrest in the S phase for HT1080 cells and the G1/M phase for A549 cells. Finally, the molecular docking study confirmed that the anticancer activity of the synthesized compounds is mediated by the activation of caspase 3.


Subject(s)
Antineoplastic Agents/pharmacology , Antiviral Agents/pharmacology , Oxadiazoles/pharmacology , Pyrimidines/pharmacology , Acyclovir/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Antiviral Agents/chemical synthesis , Antiviral Agents/chemistry , Apoptosis/drug effects , Caspase 3/metabolism , Cell Line, Tumor , Herpesvirus 3, Human/drug effects , Humans , Molecular Docking Simulation , Neoplasms/drug therapy , Neoplasms/pathology , Oxadiazoles/chemical synthesis , Oxadiazoles/chemistry , Pyrimidines/chemical synthesis , Pyrimidines/chemistry , Structure-Activity Relationship
4.
Lancet ; 365(9459): 599-609, 2005.
Article in English | MEDLINE | ID: mdl-15708105

ABSTRACT

Cataract, opacification of the lens, is one of the commonest causes of loss of useful vision, with an estimated 16 million people worldwide affected. Several risk factors have been identified in addition to increasing age--genetic composition, exposure to ultraviolet light, and diabetes. However, no method to halt the formation of a cataractous lens has been shown to be effective. Nevertheless, advances in surgical removal of cataracts, including small-incision surgery, use of viscoelastics, and the development of intraocular lenses, have made treatment very effective and visual recovery rapid in most cases. Despite these advances, cataract continues to be a leading public-health issue that will grow in importance as the population increases and life expectancy is extended worldwide.


Subject(s)
Cataract , Aging/pathology , Cataract/diagnosis , Cataract/etiology , Cataract/prevention & control , Cataract Extraction/adverse effects , Cataract Extraction/methods , Cataract Extraction/trends , Forecasting , Humans , Lens Implantation, Intraocular/adverse effects , Lens Implantation, Intraocular/methods , Lens, Crystalline/pathology , Phacoemulsification/adverse effects , Phacoemulsification/methods , Risk Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...