Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 251
Filter
2.
Int J Biol Macromol ; 280(Pt 2): 135825, 2024 Sep 21.
Article in English | MEDLINE | ID: mdl-39313050

ABSTRACT

Fibrinogen (Fg), an essential plasma glycoprotein involved in the coagulation cascade, undergoes structural alterations upon exposure to various chemicals, impacting its functionality and contributing to pathological conditions. This research article explored the effects of 4-Chloro-o-phenylenediamine (4-Cl-o-PD), a common hair dye component (IUPAC = 1-Chloro-3,4-diaminobenzene), on human fibrinogen through comprehensive computational, biophysical, and biochemical approaches. The formation of a stable ligand-protein complex is confirmed through molecular docking and molecular dynamics simulations, revealing possible interaction having a favorable -4.8 kcal/mol binding energy. Biophysical results, including UV-vis and fluorescence spectroscopies, corroborated with the computational findings, whereas Fourier transform infrared spectroscopy (FT-IR) and circular dichroism spectroscopy (CD) provide insights into the alterations of secondary structures upon interaction with 4-Cl-o-PD. Anilinonaphthalene-sulfonic acid (ANS) fluorescence showed a partially unfolded protein, with enhanced α to ß-sheet transition as evidenced by thioflavin T (ThT) spectroscopy and microscopy. Moreover, biochemical assays confirmed the formation of carbonyl compounds that may be responsible for the oxidation of methionine residues in fibrinogen. Electrophoresis and electron microscopy confirmed the formation of aggregates. Our findings elucidate the interaction pattern of 4-Cl-o-PD with Fg, leading to structural perturbation, which may have potential implications for fibrinogen misfolding or its aggregation. Protein aggregation or its misfolded products affect peripheral tissues and the central nervous system. Many chronic progressive diseases, like type II diabetes mellitus, Alzheimer's disease, Parkison's disease, and Creutzfeldt-Jakob disease are associated with intrinsically aberrant disordered proteins. Understanding these interactions may offer new perspectives on the safety and biocompatibility of dye compounds, which may contribute to developing improved strategies for acquired amyloidogenesis.

3.
Endocrine ; 2024 Aug 05.
Article in English | MEDLINE | ID: mdl-39102110

ABSTRACT

PURPOSE: Methylglyoxal (MG) is the most potent precursor during the formation of the advanced glycation end products (AGEs). MG-dependent glycative stress contributes to pathogenesis of diabetes, age-related disorders, and cancer. There is a great need to study the reduction process of glycative stress for effective management of metabolic disorders. From natural compounds to synthetic drugs, each element contributes to the reduction of glycative stress. Previously, it was established that the lowering of uric acid, low-density lipoprotein cholesterol, and urine albumin excretion rate, as well as reducing total oxidative stress, were all achieved more effectively with a levothyroxine regimen. Still, there is no such study found that supports the MG-dependent glycative stress reduction with thyroid hormone compound. Our study aims to investigate the effects of T3 and T4 on MG-dependent glycative stress. METHODS: The antiglycation effect was assayed through NBT assay, DNPH assay, ELISA, and fluorescence spectrophotometer. The intracellular reduction in reactive oxygen species (ROS) has been estimated through confocal microscopy. RESULTS: The results revealed an effective reduction in the formation of AGEs adducts and intracellular ROS formation. CONCLUSION: The investigation concludes AGEs formation was suppressed using these compounds, although in vivo and rigorous clinical trials are required in order to verify these findings.

4.
Magn Reson Med ; 2024 Aug 26.
Article in English | MEDLINE | ID: mdl-39188085

ABSTRACT

PURPOSE: To develop a reconstruction method for highly accelerated cardiac cine MRI with high spatiotemporal resolution and low temporal blurring, and to demonstrate accurate estimation of ventricular volumes and myocardial strain in healthy subjects and in patients. METHODS: The proposed method, called CineVN, employs a spatiotemporal Variational Network combined with conjugate gradient descent for optimized data consistency and improved image quality. The method is first evaluated on retrospectively undersampled cine MRI data in terms of image quality. Then, prospectively accelerated data are acquired in 18 healthy subjects both segmented over two heartbeats per slice as well as in real time with 1.6 mm isotropic resolution. Ventricular volumes and strain parameters are computed and compared to a compressed sensing reconstruction and to a conventional reference cine MRI acquisition. Lastly, the method is demonstrated in 46 patients and ventricular volumes and strain parameters are evaluated. RESULTS: CineVN outperformed compressed sensing in image quality metrics on retrospectively undersampled data. Functional parameters and myocardial strain were the most accurate for CineVN compared to two state-of-the-art compressed sensing methods. CONCLUSION: Deep learning-based reconstruction using our proposed method enables accurate evaluation of cardiac function in real-time cine MRI with high spatiotemporal resolution. This has the potential to improve cardiac imaging particularly for patients with arrhythmia or impaired breath-hold capability.

5.
Plants (Basel) ; 13(16)2024 Aug 12.
Article in English | MEDLINE | ID: mdl-39204668

ABSTRACT

The Trichilia emetica plant is traditionally used for medicinal and food purposes. However, there are limited studies on the bioactivity and cytotoxicity of its seed butter and aril oil. This study aimed to assess the antidiabetic activity and cytotoxicity of seed butter and aril oil, obtained via two different extraction methods, and compare their lipid profiles. The plant samples were collected from the Faifa mountains and extracted using a Soxhlet apparatus for hot extraction and a magnetic stirrer for cold maceration. The antidiabetic activity and cytotoxicity were evaluated using the α-amylase and MTT assays, respectively. The fatty acids were quantified utilizing gas chromatography-mass spectrometry. This study proves the impact of the extraction method on the yield, cytotoxicity, antidiabetic activity and lipid profile. The highest cytotoxicity was observed with the seed butter obtained via Soxhlet extraction. The α-amylase inhibition was observed at the highest levels with the seed butter and aril oil obtained via cold maceration. The palmitic acid (PA) and oleic acid (OA) were detected at their maximal concentrations in the seed butter obtained via Soxhlet extraction and aril oil obtained via cold maceration, respectively. This study represents an essential basis for understanding the importance of T. emetica as a valuable tree for food, cosmetic and medicinal purposes. Further experiments can lead to the development of green extraction techniques and isolation of the cytotoxic and antidiabetic molecules that can be developed into new pharmaceutical products or serve as lead molecules for new drugs.

6.
Brain Res ; 1843: 149123, 2024 Nov 15.
Article in English | MEDLINE | ID: mdl-39025397

ABSTRACT

Depression is a complicated neuropsychiatric condition with an incompletely understoodetiology, making the discovery of effective therapies challenging. Animal models have been crucial in improving our understanding of depression and enabling antidepressant medication development. The CUMS model has significant face validity since it induces fundamental depression symptoms in humans, such as anhedonia, behavioral despair, anxiety, cognitive impairments, and changes in sleep, food, and social behavior. Its construct validity is demonstrated by the dysregulation of neurobiological systems involved in depression, including monoaminergic neurotransmission, the hypothalamic-pituitary-adrenal axis, neuroinflammatory processes, and structural brain alterations. Critically, the model's predictive validity is demonstrated by the reversal of CUMS-induced deficits following treatment with clinically effective antidepressants such as selective serotonin reuptake inhibitors, serotonin-norepinephrine reuptake inhibitors, tricyclic antidepressants, and monoamine oxidase inhibitors. This review comprehensivelyassesses the multifarious depressive-like phenotypes in the CUMS model using behavioral paradigms like sucrose preference, forced swim, tail suspension, elevated plus maze, and novel object recognition tests. It investigates the neurobiological mechanisms that underlie CUMS-induced behaviors, including signaling pathways involving tumor necrosis factor-alpha, brain-derived neurotrophic factor and its receptor TrkB, cyclooxygenase-2, glycogen synthase kinase-3 beta, and the kynurenine pathway. This review emphasizes the CUMS model's importance as a translationally relevant tool for unraveling the complex mechanisms underlying depression and facilitating the development of improved and targeted interventions for this debilitating neuropsychiatric disorder by providing a comprehensive overview of its validity, behavioral assessments, and neurobiological underpinnings.


Subject(s)
Depression , Disease Models, Animal , Stress, Psychological , Animals , Stress, Psychological/metabolism , Stress, Psychological/drug therapy , Depression/drug therapy , Depression/metabolism , Humans , Antidepressive Agents/pharmacology , Antidepressive Agents/therapeutic use , Depressive Disorder/drug therapy , Depressive Disorder/metabolism , Depressive Disorder/physiopathology , Translational Research, Biomedical/methods , Behavior, Animal/drug effects , Behavior, Animal/physiology , Brain/metabolism , Brain/drug effects
7.
Cells ; 13(11)2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38891089

ABSTRACT

Inflammatory bowel disease (IBD) is a chronic gut disorder that also elevates the risk of colorectal cancer (CRC). The global incidence and severity of IBD are rising, yet existing therapies often lead to severe side effects. Curcumin offers potent anti-inflammatory and chemotherapeutic properties. However, its clinical translation is hindered by rapid metabolism, as well as poor water solubility and stability, which limits its bioavailability. To address these challenges, we developed OC-S, a water-soluble and colon-targeted curcumin formulation that protects against colitis in mice. The current study advances OC-S as a dietary supplement by establishing its stability and compatibility with various commercial dietary products. Further, OC-S exhibited specific binding to inflamed colon tissue, potentially aiding in targeted drug retention at the inflammation site in colitis with diarrhea symptoms. We further investigated its efficacy in vivo and in vitro using a murine model of colitis and tumoroids from APCmin mice. OC-S significantly reduced colitis severity and pro-inflammatory cytokine expression compared with curcumin, even at very low doses (5 mg/kg/day). It also demonstrated higher anti-proliferative activity in CRC cells and colon cancer tumoroids vs. curcumin. Overall, this study demonstrated that OC-S effectively targets and retains water-soluble curcumin at the inflamed colon sites, while showing promise in addressing both colitis and colorectal cancer, which potentially paves the way for OC-S to advance into clinical development as a dietary product for both IBD and CRC.


Subject(s)
Colitis , Colorectal Neoplasms , Curcumin , Animals , Curcumin/pharmacology , Curcumin/therapeutic use , Colorectal Neoplasms/pathology , Colorectal Neoplasms/drug therapy , Colitis/drug therapy , Colitis/pathology , Colitis/chemically induced , Mice , Humans , Mice, Inbred C57BL , Disease Models, Animal , Cell Proliferation/drug effects , Dietary Supplements , Male , Protective Agents/pharmacology
8.
Antibiotics (Basel) ; 13(6)2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38927210

ABSTRACT

Momordica charantia, commonly known as bitter melon, is a fruiting plant that has been used for several diseases including infectious diseases. In this study, we report the antibacterial, antifungal, and antiviral activity of different bitter melon fruit parts originating from India and Saudi Arabia. The in vitro experiments are supported by the molecular docking of karavilosides to verify their role in the bioactivity. The antimicrobial assays revealed activity against Candida albicans, Escherichia coli, and Staphylococcus aureus. The extracts exhibited the potent inhibition of HIV-I reverse transcriptase, with an IC50 of 0.125 mg/mL observed for the pith extract originating from Saudi Arabia and the standard drug doxorubicin. The molecular docking of karavilosides exhibited a significant affinity to reverse transcriptase comparable to Rilpivirine and higher than that of doxorubicin. These outcomes encourage the precious bioactive components of the seed and pith of the Saudi bitter melon fruits to be further studied for isolation and structure elucidation.

9.
Int J Health Sci (Qassim) ; 18(3): 4-5, 2024.
Article in English | MEDLINE | ID: mdl-38721141
10.
Magn Reson Med ; 92(3): 1248-1262, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38733066

ABSTRACT

PURPOSE: To present and assess an outlier mitigation method that makes free-running volumetric cardiovascular MRI (CMR) more robust to motion. METHODS: The proposed method, called compressive recovery with outlier rejection (CORe), models outliers in the measured data as an additive auxiliary variable. We enforce MR physics-guided group sparsity on the auxiliary variable, and jointly estimate it along with the image using an iterative algorithm. For evaluation, CORe is first compared to traditional compressed sensing (CS), robust regression (RR), and an existing outlier rejection method using two simulation studies. Then, CORe is compared to CS using seven three-dimensional (3D) cine, 12 rest four-dimensional (4D) flow, and eight stress 4D flow imaging datasets. RESULTS: Our simulation studies show that CORe outperforms CS, RR, and the existing outlier rejection method in terms of normalized mean square error and structural similarity index across 55 different realizations. The expert reader evaluation of 3D cine images demonstrates that CORe is more effective in suppressing artifacts while maintaining or improving image sharpness. Finally, 4D flow images show that CORe yields more reliable and consistent flow measurements, especially in the presence of involuntary subject motion or exercise stress. CONCLUSION: An outlier rejection method is presented and tested using simulated and measured data. This method can help suppress motion artifacts in a wide range of free-running CMR applications.


Subject(s)
Algorithms , Imaging, Three-Dimensional , Magnetic Resonance Imaging, Cine , Humans , Imaging, Three-Dimensional/methods , Magnetic Resonance Imaging, Cine/methods , Artifacts , Computer Simulation , Motion , Image Processing, Computer-Assisted/methods , Magnetic Resonance Imaging/methods , Image Interpretation, Computer-Assisted/methods , Reproducibility of Results , Heart/diagnostic imaging
11.
Int J Biol Macromol ; 268(Pt 1): 131743, 2024 May.
Article in English | MEDLINE | ID: mdl-38653426

ABSTRACT

Genotoxic DNA damaging agents are the choice of chemicals for studying DNA repair pathways and the associated genome instability. One such preferred laboratory chemical is methyl methanesulfonate (MMS). MMS, an SN2-type alkylating agent known for its ability to alkylate adenine and guanine bases, causes strand breakage. Exploring the outcomes of MMS interaction with DNA and the associated cytotoxicity will pave the way to decipher how the cell confronts methylation-associated stress. This study focuses on an in-depth understanding of the structural instability, induced antigenicity on the DNA molecule, cross-reactive anti-DNA antibodies, and cytotoxic potential of MMS in peripheral lymphocytes and cancer cell lines. The findings are decisive in identifying the hazardous nature of MMS to alter the intricacies of DNA and morphology of the cell. Structural alterations were assessed through UV-Vis, fluorescence, liquid chromatography, and mass spectroscopy (LCMS). The thermal instability of DNA was analyzed using duplex melting temperature profiles. Scanning and transmission electron microscopy revealed gross topographical and morphological changes. MMS-modified DNA exhibited increased antigenicity in animal subjects. MMS was quite toxic for the cancer cell lines (HCT116, A549, and HeLa). This research will offer insights into the potential role of MMS in inflammatory carcinogenesis and its progression.


Subject(s)
DNA Damage , DNA , Inflammation , Methyl Methanesulfonate , Humans , DNA/chemistry , Inflammation/chemically induced , Inflammation/pathology , Animals , Carcinogenesis/drug effects , HeLa Cells , A549 Cells , Lymphocytes/drug effects , Lymphocytes/immunology , HCT116 Cells
12.
Int J Biol Macromol ; 267(Pt 1): 131474, 2024 May.
Article in English | MEDLINE | ID: mdl-38599429

ABSTRACT

Advanced glycation end products (AGEs) are produced non-enzymatically through the process of glycation. Increased AGEs production has been linked to several diseases including polycystic ovary syndrome (PCOS). PCOS contributes to the development of secondary comorbidities, such as diabetes, cardiovascular complications, infertility, etc. Consequently, research is going on AGEs-inhibiting phytochemicals for their potential to remediate and impede the progression of hyperglycaemia associated disorders. In this study human serum albumin is used as a model protein, as albumin is predominantly present in follicular fluid. This article focusses on the interaction and antiglycating potential of (-)-Epigallocatechin-3-gallate (EGCG) and vitamin D in combination using various techniques. The formation of the HSA-EGCG and HSA-vitamin D complex was confirmed by UV and fluorescence spectroscopy. Thermodynamic analysis verified the spontaneity of reaction, and presence of hydrogen bonds and van der Waals interactions. FRET confirms high possibility of energy transfer. Cumulative antiglycation resulted in almost 60 % prevention in AGEs formation, decreased alterations at lysine and arginine, and reduced protein carbonylation. Secondary and tertiary structural changes were analysed by circular dichroism, Raman spectroscopy and ANS binding assay. Type and size of aggregates were confirmed by Rayleigh and dynamic light scattering, ThT fluorescence, SEM and SDS-PAGE. Effect on cellular redox status, DNA integrity and cytotoxicity was analysed in lymphocytes using dichlorofluorescein (DCFH-DA), DAPI and MTT assay which depicted an enhancement in antioxidant level by cumulative treatment. These findings indicate that EGCG and vitamin D binds strongly to HSA and have antiglycation ability which enhances upon synergism.


Subject(s)
Catechin , Catechin/analogs & derivatives , Cholecalciferol , Glycation End Products, Advanced , Protein Binding , Serum Albumin, Human , Catechin/pharmacology , Catechin/chemistry , Catechin/metabolism , Humans , Glycation End Products, Advanced/metabolism , Cholecalciferol/pharmacology , Cholecalciferol/metabolism , Cholecalciferol/chemistry , Serum Albumin, Human/metabolism , Serum Albumin, Human/chemistry , Molecular Docking Simulation , Thermodynamics , Computer Simulation
13.
Protein J ; 43(3): 425-436, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38491250

ABSTRACT

Hyperglycaemia is a life-threatening risk factor that occurs in both chronic and acute phases and has been linked to causing injury to many organs. Protein modification was triggered by hyperglycaemic stress, which resulted in pathogenic alterations such as impaired cellular function and tissue damage. Dysregulation in cellular function increases the condition associated with metabolic disorders, including cardiovascular diseases, nephropathy, retinopathy, and neuropathy. Hyperglycaemic stress also increases the proliferation of cancer cells. The major areas of experimental biomedical research have focused on the underlying mechanisms involved in the cellular signalling systems involved in diabetes-associated chronic hyperglycaemia. Reactive oxygen species and oxidative stress generated by hyperglycaemia modify many intracellular signalling pathways that result in insulin resistance and ß-cell function degradation. The dysregulation of post translational modification in ß cells is clinically associated with the development of diabetes mellitus and its associated diseases. This review will discuss the effect of hyperglycaemic stress on protein modification and the cellular signalling involved in it. The focus will be on the significant molecular changes associated with severe metabolic disorders.


Subject(s)
Hyperglycemia , Metabolic Diseases , Protein Processing, Post-Translational , Signal Transduction , Humans , Hyperglycemia/metabolism , Metabolic Diseases/metabolism , Metabolic Diseases/etiology , Animals , Oxidative Stress , Reactive Oxygen Species/metabolism
14.
IUBMB Life ; 76(8): 468-484, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38440959

ABSTRACT

Nanotechnology is considered a successful approach for cancer diagnosis and treatment. Preferentially, cancer cell recognition and drug targeting via nano-delivery system include the penetration of anticancer agents into the cell membrane to damage the cancer cell by protein modification, DNA oxidation, or mitochondrial dysfunction. The past research on nano-delivery systems and their target has proven the beneficial achievement in a malignant tumor. Modern perceptions using inventive nanomaterials for cancer management have been offered by a multifunctional platform based on various nano-carriers with the probability of imaging and cancer therapy simultaneously. Emerging nano-delivery systems in cancer therapy still lack knowledge of the biological functions behind the interaction between nanoparticles and cancer cells. Since the potential of engineered nanoparticles addresses the various challenges, limiting the success of cancer therapy subsequently, it is a must to review the molecular targeting of a nano-delivery system to enhance the therapeutic efficacy of cancer. This review focuses on using a nano-delivery system, an imaging system, and encapsulated nanoparticles for cancer therapy.


Subject(s)
Antineoplastic Agents , Nanomedicine , Neoplasms , Humans , Neoplasms/drug therapy , Nanomedicine/methods , Antineoplastic Agents/therapeutic use , Antineoplastic Agents/administration & dosage , Nanoparticles/chemistry , Drug Delivery Systems , Animals , Drug Carriers/chemistry
15.
Br J Oral Maxillofac Surg ; 62(3): 272-277, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38413292

ABSTRACT

This prospective cohort study examined the changes in airway area and soft tissue parameters following interpositional arthroplasty for temporomandibular joint (TMJ) ankylosis. Ten patients with TMJ ankylosis underwent surgery, and preoperative and postoperative skeletal and soft tissue measurements were obtained. A significant rise in soft tissue parameters was observed following surgery, although only minor changes in skeletal parameters were seen. The nasoropharyngeal area, oral area, soft palate area, and tongue area were examined. After the surgery, increases in values were observed in the nasoropharyngeal area (from 3482.4 mm2 to 3618.7 mm2), the oral area (from 2731.8 mm2 to 2840.8 mm2), the soft palate area (from 204.9 mm2 to 217.3 mm2), and the tongue area (from 2577.5 mm2 to 2600.8 mm2). These findings suggest that interpositional arthroplasty can improve airway area and soft tissue dimensions, affecting the stomatognathic system's aesthetic and functional aspects. Further research is needed to validate these results and assess long-term stability.


Subject(s)
Ankylosis , Arthroplasty , Cephalometry , Temporomandibular Joint Disorders , Humans , Ankylosis/surgery , Temporomandibular Joint Disorders/surgery , Prospective Studies , Female , Male , Arthroplasty/methods , Adult , Young Adult , Adolescent , Middle Aged , Pharynx/anatomy & histology
16.
Saudi J Biol Sci ; 31(4): 103962, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38419820

ABSTRACT

The control of infections is one of the key strategies to treat cuts, wounds, lung, and skin infections. In this study the folkloric use of Rumex dentatus (R. dentatus) roots in the mentioned conditions was scientifically investigated. The methanolic (MeOH) crude extract of R. dentatus root was fractionated (n-hexane, ethyl acetate and water) via bioassay-guided method, and its antibacterial activity was evaluated using the agar well diffusion and Minimum inhibitory concentration (MIC) assays against clinical isolate of Pseudomonas aeruginosa (P. aeruginosa). The antibiofilm activity was measured using the crystal violet staining method. The crude extract, fractions and sub-fractions tested showed the MICs values ranging from 200 to 1000 µg/mL respectively. Among the fractions, notably, the water fraction exhibited the highest activity against P. aeruginosa. The water fraction was then subjected to thin layer chromatography (TLC). Following spectrometric analysis using HPLC-ESI-Q-TOF-MS, gallic acid and emodin were identified as the primary components within the same fraction, responsible for eliciting antibacterial and antibiofilm effects. The in-silico studies conducted with AutoDock Vina on the LasR protein, using both isolated gallic acid and emodin, confirm the binding affinity of these molecules to the active sites of the LasR protein that has regulatory role in building of biofilm formation and its pathogenicity. By scientifically validating the infection-controlling properties of R. dentatus, this research provides compelling evidence that supports its traditional use as reported in folklore. Moreover, this study contributes to our understanding of the plant's potential in managing infections, thereby substantiating its traditional therapeutic application in a scientific context.

17.
Ultrason Sonochem ; 103: 106789, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38309047

ABSTRACT

BACKGROUND: Solanum pseudocapsicum (PC) and Capsicum annum (CA) belongs to the family of Solanaceae. CA have been reported a rich source of phenolics whereas, the phenolics content of GA (gallic acid), SC (scopoletin), RA (rosmarinic acid), and RV (resveratrol) are yet to be reported for the PC-fruit. This study comparatively evaluates the phenolics profile for different parts (seeds and skin) and colors (green and red) of the PC- and CA-fruits using the green solvents of ethanol (ET), acetone (AC), water (H2O), and different combinations of these solvents. METHODOLOGY: Ultrasonics extraction (US) and UHPLC analysis were employed for phenolics evaluation. RESULTS: The USMD (method development) revealed the highest extract yield of 62 mg/100 mg for the PC-skin in ET:AC (70:30) solvent whereas, more phenolics (ppm) were observed for PC-seeds in ET:AC (50:50) solvent, particularly the SC (29.46) and GA (16.92). The UHPLCMDMV exhibited significant accuracies (100.70-114.14 %) with r2-values (0.9993-0.9997) in the linearity range of 1-200 ppm. The USMV (method validation) in PC- and CA-fruit parts and colors revealed more extract yields for the red skin part of the PC- (180.5 mg) and CA-fruit (126.2 mg). The phenolics were seen more in the green seeds of the PC-fruit (ppm); SC (276), GA (147.36), RV (28.54), and RA (23.87) followed by the green PC-skin, and red/green CA-seeds. The statistical models of mean differences, ANOVA, and Pearson's correlation showed significant differences for the PC-fruit parts (seeds and skin) and colors (red and green) vs extract yield and phenolics content (P = 0.05). CONCLUSION: PC-and CA-fruits were successfully evaluated where the seeds for the green fruits exhibited more phenolics amount.


Subject(s)
Capsicum , Solanum , Ultrasonics , Chromatography, High Pressure Liquid , Plant Extracts , Phenols/analysis , Solvents , Fruit/chemistry , Antioxidants/analysis , Ethanol , Camphor/analysis , Menthol/analysis , Acetone
18.
Saudi Pharm J ; 32(3): 101988, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38380161

ABSTRACT

Complementary and alternative medicine (CAM) has attracted much interest, and its prevalence in both developed and developing countries has increased. During the Hajj season, millions of Muslims from many different countries travel to Makkah for the pilgrimage. In dealing with health issues during the holy season, many pilgrims prefer to self-medicate with traditional remedies instead of visiting medical practitioners, which could affect the efforts of state healthcare organizations to maintain overall public health during this mass gathering. This study aims to gauge the prevalence of CAM use during Hajj, and to assess pilgrims' beliefs and knowledge of CAM therapies, with particular reference to products available in Makkah. A cross-sectional survey was conducted in several camps and hotels occupied by Hajj pilgrims in Makkah, during Hajj 2023. CAM modalities were used by 68.8 % of the study participants during the Hajj season. There were almost equal numbers of men (53.7 %) and women (46.3 %) participants, with 88 % of the CAM users being non-Saudi and only 12 % Saudi. The majority of the CAM users belonged to two age groups, the 31-40 year group (29.9 %) and the 41-50 year group (34.5 %). The most frequent self-practice therapies were religious prayer/rituals (30.2 %), and the most popular practitioner therapies was herbal treatments (12.3 %). The most common source of CAM-related information was family/friends (29.2 %), for improving well-being reason (25.8 %). More than half of the participants (56.8 %) strongly believed that CAM therapies have the potential to cure disease, although they were unaware of possible interactions between CAM and conventional drugs (76.7 %). More than half of the participants (57.8 %) did not disclose their CAM usage to healthcare practitioners. Half of the sample said they used CAMs during Hajj because of the common belief that therapeutic products from the holy city of Makkah, such as Zamzam water, are more effective. In conclusion, CAM therapies are commonly used by Hajj pilgrims as they are presumed to be natural and therefore safe, raising concerns about the potential risks of relying on CAM without adequate consultation with healthcare providers or awareness of potential interactions between prescription drugs and CAM treatments.

19.
Prev Med Rep ; 38: 102595, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38298823

ABSTRACT

Annual influenza vaccination is an effective way to reduce the burden of disease throughout the year. A cross-sectional study was conducted in primary healthcare centres in Qatar to determine vaccination coverage among physicians, motivators, and barriers. The vaccination rate was higher among physicians aged 45 years and above (p-value < 0.005). Most primary care physicians (95 %) strongly agree that being vaccinated reduces the risk of disease spread. The most frequently mentioned barriers were the belief that one could still get influenza after being vaccinated and the fear of side effects (92.6 % and 29.5 %, respectively). Health authorities can implement strategies that take these factors into account to increase immunization coverage.

20.
Food Chem ; 445: 138479, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38387310

ABSTRACT

A first-time green extraction and LCMSMS analysis for karavilosides (KVs) VIII, X, and XI in different parts (skin, pith, and seed) of the fresh and dried fruit of bitter melon (BM) is reported herein. Ultrasonication for green extraction whereas, LCMS/MS for KVs quantification were used. More extract yield (675.80 ± 163.57 mg/g) was observed for the dried fruit parts compared to the fresh BM-fruit parts (513.20 ± 75.42 mg/g). The fresh skin (343.40 ± 54.07 mg/4g) and dried seeds (311.80 and 77.95 ± 38.98) exhibited more yield whereas, the solvent yield (mg/4mg) observed was; H2O (651.70) > EtOH (227.20) > EtAC (163.30) > ACT (146.80). The LCMS/MS yield for the KVs revealed a descending order; KVXI (2376.44 ppb) > KVX (639.17 ppb) > KVVIII (599.83 ppb). More correlation was seen for the solvent Vs extract yield whereas, the KVs revealed more correlation for the BM-fruit part (P = 0.05). The study comprehensively characterized the parts of fresh and dried BM-fruits in terms of extract yield and KVs amount.


Subject(s)
Momordica charantia , Triterpenes , Fruit/chemistry , Glycosides , Plant Extracts/analysis , Solvents
SELECTION OF CITATIONS
SEARCH DETAIL