Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Total Environ ; 917: 170218, 2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38280578

ABSTRACT

Spatiotemporal distribution patterns of microplastic (MP) particles in lakes hinge on both the physical conditions in the lake and particle properties. Using numerical simulations, we systematically investigated the influence of lake depth and bathymetry, wind and temperature conditions, MP particle release location and timing, as well as particle diameter (10, 20, and 50 µm). Our results indicate that maximum lake depth had the greatest effect on the residence time in the water column, as it determines the settling timescale and occurrence of hydrodynamic complexity such as density-driven flows in the lake. Increasing particle size from 10 to 20 and 50 µm also significantly reduced the residence time making particle size the factor with the second strongest effect on the residence time and, in turn, on the availability of MP particles for uptake by organisms. Changing bathymetry from a uniform to a non-uniform had a less pronounced effect on particle residence time compared to maximum depth and particle size. Release location, wind conditions, and release time had comparably little effect on particle behavior but became more important as MP particle size decreased. The release of the 10 µm MP particles in the deeper lakes with uniform bathymetry during summer with stable thermal stratification, resulted in a nearly month-long turnover phase in the fall in which both settling and rising of particles occurred simultaneously. This was caused by convective heat and water transport during this period. In these scenarios about 2.6 to 5.4 % of the released MP particles were held in or returned to the water layers near the lake surface. While acknowledging the dominant role of lake depth and MP particle size on the particle residence time, this study further emphasizes that it is ultimately a particular combination of different factors and their interactions that shape MP distribution patterns in lakes.

2.
Water Res ; 243: 120349, 2023 Sep 01.
Article in English | MEDLINE | ID: mdl-37482004

ABSTRACT

Despite the significance of rivers and streams as pathways for microplastics (MP) entering the marine environment, limited research has been conducted on the behavior of MP within fluvial systems. Specifically, there is a lack of understanding regarding the infiltration and transport dynamics of MP across the streambed interface and within the hyporheic sediments. In this study, transport and retention of MP are investigated using a new numerical modeling approach. The model is built as a digital twin of accompanying flume experiments, which are used to validate the simulation results. The model accurately represents particle transport in turbulent water flow and within the hyporheic zone (HZ). Simulations for transport and infiltration of 1 µm MP particles into a sandy streambed demonstrate that the advection-dispersion equation can be used to adequately represent particle transport for pore-scale sized MP within the HZ. To assess the applicability of the modeling framework for larger MP, the experiment was repeated using 10 µm particles. The larger particles exhibited delayed infiltration and transport behavior, and while the model successfully represented the spatial extent of particle transport through the HZ, it was unable to fully replicate hyporheic transit times. This study is the first to combine explicit validation against experimental data, encompassing qualitative observations of MP concentration patterns and quantification of fluxes. By that, it significantly contributes to our understanding of MP transport processes in fluvial systems. The study also highlights the advantages and limitations of employing a fully integrated modeling approach to investigate the transport and retention behavior of MP in rivers and streams.


Subject(s)
Microplastics , Plastics , Geologic Sediments , Computer Simulation , Rivers
SELECTION OF CITATIONS
SEARCH DETAIL
...