Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Tomography ; 6(2): 65-76, 2020 06.
Article in English | MEDLINE | ID: mdl-32548282

ABSTRACT

Quantitative imaging biomarkers (QIBs) provide medical image-derived intensity, texture, shape, and size features that may help characterize cancerous tumors and predict clinical outcomes. Successful clinical translation of QIBs depends on the robustness of their measurements. Biomarkers derived from positron emission tomography images are prone to measurement errors owing to differences in image processing factors such as the tumor segmentation method used to define volumes of interest over which to calculate QIBs. We illustrate a new Bayesian statistical approach to characterize the robustness of QIBs to different processing factors. Study data consist of 22 QIBs measured on 47 head and neck tumors in 10 positron emission tomography/computed tomography scans segmented manually and with semiautomated methods used by 7 institutional members of the NCI Quantitative Imaging Network. QIB performance is estimated and compared across institutions with respect to measurement errors and power to recover statistical associations with clinical outcomes. Analysis findings summarize the performance impact of different segmentation methods used by Quantitative Imaging Network members. Robustness of some advanced biomarkers was found to be similar to conventional markers, such as maximum standardized uptake value. Such similarities support current pursuits to better characterize disease and predict outcomes by developing QIBs that use more imaging information and are robust to different processing factors. Nevertheless, to ensure reproducibility of QIB measurements and measures of association with clinical outcomes, errors owing to segmentation methods need to be reduced.


Subject(s)
Fluorodeoxyglucose F18 , Head and Neck Neoplasms , Positron-Emission Tomography , Bayes Theorem , Biomarkers, Tumor , Head and Neck Neoplasms/diagnostic imaging , Humans , Reproducibility of Results , Tomography, X-Ray Computed
2.
Med Phys ; 44(2): 479-496, 2017 Feb.
Article in English | MEDLINE | ID: mdl-28205306

ABSTRACT

PURPOSE: Radiomics utilizes a large number of image-derived features for quantifying tumor characteristics that can in turn be correlated with response and prognosis. Unfortunately, extraction and analysis of such image-based features is subject to measurement variability and bias. The challenge for radiomics is particularly acute in Positron Emission Tomography (PET) where limited resolution, a high noise component related to the limited stochastic nature of the raw data, and the wide variety of reconstruction options confound quantitative feature metrics. Extracted feature quality is also affected by tumor segmentation methods used to define regions over which to calculate features, making it challenging to produce consistent radiomics analysis results across multiple institutions that use different segmentation algorithms in their PET image analysis. Understanding each element contributing to these inconsistencies in quantitative image feature and metric generation is paramount for ultimate utilization of these methods in multi-institutional trials and clinical oncology decision making. METHODS: To assess segmentation quality and consistency at the multi-institutional level, we conducted a study of seven institutional members of the National Cancer Institute Quantitative Imaging Network. For the study, members were asked to segment a common set of phantom PET scans acquired over a range of imaging conditions as well as a second set of head and neck cancer (HNC) PET scans. Segmentations were generated at each institution using their preferred approach. In addition, participants were asked to repeat segmentations with a time interval between initial and repeat segmentation. This procedure resulted in overall 806 phantom insert and 641 lesion segmentations. Subsequently, the volume was computed from the segmentations and compared to the corresponding reference volume by means of statistical analysis. RESULTS: On the two test sets (phantom and HNC PET scans), the performance of the seven segmentation approaches was as follows. On the phantom test set, the mean relative volume errors ranged from 29.9 to 87.8% of the ground truth reference volumes, and the repeat difference for each institution ranged between -36.4 to 39.9%. On the HNC test set, the mean relative volume error ranged between -50.5 to 701.5%, and the repeat difference for each institution ranged between -37.7 to 31.5%. In addition, performance measures per phantom insert/lesion size categories are given in the paper. On phantom data, regression analysis resulted in coefficient of variation (CV) components of 42.5% for scanners, 26.8% for institutional approaches, 21.1% for repeated segmentations, 14.3% for relative contrasts, 5.3% for count statistics (acquisition times), and 0.0% for repeated scans. Analysis showed that the CV components for approaches and repeated segmentations were significantly larger on the HNC test set with increases by 112.7% and 102.4%, respectively. CONCLUSION: Analysis results underline the importance of PET scanner reconstruction harmonization and imaging protocol standardization for quantification of lesion volumes. In addition, to enable a distributed multi-site analysis of FDG PET images, harmonization of analysis approaches and operator training in combination with highly automated segmentation methods seems to be advisable. Future work will focus on quantifying the impact of segmentation variation on radiomics system performance.


Subject(s)
Fluorodeoxyglucose F18 , Imaging, Three-Dimensional/methods , Phantoms, Imaging , Positron-Emission Tomography/methods , Radiopharmaceuticals , Datasets as Topic , Equipment Design , Head and Neck Neoplasms/diagnostic imaging , Humans , Imaging, Three-Dimensional/instrumentation , Pattern Recognition, Automated/methods , Positron-Emission Tomography/instrumentation , Regression Analysis , Reproducibility of Results , Software , Tumor Burden
SELECTION OF CITATIONS
SEARCH DETAIL
...