Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Eur J Ophthalmol ; 26(1): 78-84, 2016.
Article in English | MEDLINE | ID: mdl-26165328

ABSTRACT

PURPOSE: To introduce the first Hungarian patients with genetically defined Leber congenital amaurosis (LCA) and to report 2 novel mutations. METHODS: Seven otherwise healthy patients (4-29 years, 5 male and 2 female) who had an onset of severe visual impairment before age 2 years were investigated. The diagnosis was established in all individuals by medical history, funduscopy, and full-field electroretinogram (ERG). Ocular examination included visual acuity testing, digital fundus photography, and in 6 patients retinal imaging with optical coherence tomography (OCT). Arrayed primer extension microarray screening was performed in all probands. In 2 patients, further Sanger sequencing and targeted next-generation sequencing revealed the second disease allele. RESULTS: A cone-rod type LCA was revealed in 4 patients and a rod-cone type disease in 3 patients. Five patients presented with maculopathy. Optical coherence tomography (OCT) imaging showed diffuse retinal thickening in 3 probands with severe macular atrophy in one. Full-field ERGs were undetectable or residual in all patients. Genetic screening revealed AIPL1, CRB1, and CEP290 gene-related pathology in 6 patients; in 1 proband, no mutation was found. Three homozygous and 3 compound heterozygous mutations were identified. Two novel variants were detected: c.2536G>T (p.G846X) in the CRB1 gene and c.4929delA (p.Lys1643fsX2) in the CEP290 gene. CONCLUSIONS: Genetic subtypes identified are among the most common ones in LCA; the phenotypes are consistent with those reported previously. Both novel mutations are predicted to result in a premature translation termination. The phenotype related to the novel CRB1 mutation results in severe atrophic maculopathy.


Subject(s)
Antigens, Neoplasm/genetics , Eye Proteins/genetics , Leber Congenital Amaurosis/genetics , Membrane Proteins/genetics , Mutation, Missense , Neoplasm Proteins/genetics , Nerve Tissue Proteins/genetics , Adult , Cell Cycle Proteins , Child , Child, Preschool , Cytoskeletal Proteins , DNA Mutational Analysis , Electroretinography , Female , Genotype , Heterozygote , Humans , Hungary , Leber Congenital Amaurosis/diagnosis , Male , Tomography, Optical Coherence
3.
J Appl Genet ; 46(1): 45-58, 2005.
Article in English | MEDLINE | ID: mdl-15741664

ABSTRACT

MilkProtChip is an oligonucleotide microarray based on the arrayed primer extension (APEX) technique, allowing genotyping of single nucleotide polymorphisms (SNPs) in genes of interest for bovine milk protein biosynthesis. APEX consists of a sequencing reaction primed by an oligonucleotide anchored with its 5'end to a glass slide and terminating one nucleotide before the polymorphic site. The extension with one fluorescently labeled dideoxy nucleotide complementary to the template reveals the polymorphism. A total of 75 SNPs were selected among those associated directly or potentially with milk protein content. Among the 75 SNPs, 4 did not produce a positive signal. Most of the remaining SNPs produced a signal for both strands, except for 4 (one strand). In the validation step, 12 Polish Holstein bulls, 1 Polish Red bull, 1 bison (Bison bonasus), 11 Jersey cows and 25 Polish Holstein cows were screened to validate SNPs. Among the 71 selected SNPs--26 were found monoallelic, the rest showing at least two genotypes for the entire population under study. All the animals were earlier genotyped for 2-5 SNPs by PCR-RFLP and PCR sequencing and all showed complete concordance with APEX genotyping. APEX reactions showed relatively high signal frequencies: more than 0.9, 0.9-0.8 and below 0.8, for 65, 4 and 2 DNA samples, respectively. The primary application of the MilkProtChip is the simultaneous genotyping of dozens of SNPs to reveal and clarify the genetic background of milk protein biosynthesis. The chip may possibly be used for dairy cattle identification and paternity analysis, evolutionary studies, the evaluation of genetic distances between wild and domestic cattle breeds and the domestication history of bovine species.


Subject(s)
Milk Proteins/biosynthesis , Oligonucleotide Array Sequence Analysis , Polymorphism, Single Nucleotide , Animals , Base Sequence , Cattle , DNA Primers , Female , Male , Species Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...