Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
NMR Biomed ; : e5135, 2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38440911

ABSTRACT

This work develops and evaluates a self-navigated variable density spiral (VDS)-based manifold regularization scheme to prospectively improve dynamic speech magnetic resonance imaging (MRI) at 3 T. Short readout duration spirals (1.3-ms long) were used to minimize sensitivity to off-resonance. A custom 16-channel speech coil was used for improved parallel imaging of vocal tract structures. The manifold model leveraged similarities between frames sharing similar vocal tract postures without explicit motion binning. The self-navigating capability of VDS was leveraged to learn the Laplacian structure of the manifold. Reconstruction was posed as a sensitivity-encoding-based nonlocal soft-weighted temporal regularization scheme. Our approach was compared with view-sharing, low-rank, temporal finite difference, extra dimension-based sparsity reconstruction constraints. Undersampling experiments were conducted on five volunteers performing repetitive and arbitrary speaking tasks at different speaking rates. Quantitative evaluation in terms of mean square error over moving edges was performed in a retrospective undersampling experiment on one volunteer. For prospective undersampling, blinded image quality evaluation in the categories of alias artifacts, spatial blurring, and temporal blurring was performed by three experts in voice research. Region of interest analysis at articulator boundaries was performed in both experiments to assess articulatory motion. Improved performance with manifold reconstruction constraints was observed over existing constraints. With prospective undersampling, a spatial resolution of 2.4 × 2.4 mm2 /pixel and a temporal resolution of 17.4 ms/frame for single-slice imaging, and 52.2 ms/frame for concurrent three-slice imaging, were achieved. We demonstrated implicit motion binning by analyzing the mechanics of the Laplacian matrix. Manifold regularization demonstrated superior image quality scores in reducing spatial and temporal blurring compared with all other reconstruction constraints. While it exhibited faint (nonsignificant) alias artifacts that were similar to temporal finite difference, it provided statistically significant improvements compared with the other constraints. In conclusion, the self-navigated manifold regularized scheme enabled robust high spatiotemporal resolution dynamic speech MRI at 3 T.

2.
IEEE Trans Med Imaging ; 41(12): 3552-3561, 2022 12.
Article in English | MEDLINE | ID: mdl-35816534

ABSTRACT

Current deep learning-based manifold learning algorithms such as the variational autoencoder (VAE) require fully sampled data to learn the probability density of real-world datasets. However, fully sampled data is often unavailable in a variety of problems, including the recovery of dynamic and high-resolution magnetic resonance imaging (MRI). We introduce a novel variational approach to learn a manifold from undersampled data. The VAE uses a decoder fed by latent vectors, drawn from a conditional density estimated from the fully sampled images using an encoder. Since fully sampled images are not available in our setting, we approximate the conditional density of the latent vectors by a parametric model whose parameters are estimated from the undersampled measurements using back-propagation. We use the framework for the joint alignment and recovery of multi-slice free breathing and ungated cardiac MRI data from highly undersampled measurements. Experimental results demonstrate the utility of the proposed scheme in dynamic imaging alignment and reconstructions.


Subject(s)
Image Processing, Computer-Assisted , Magnetic Resonance Imaging , Image Processing, Computer-Assisted/methods , Magnetic Resonance Imaging/methods , Algorithms , Respiration , Heart/diagnostic imaging
3.
IEEE Trans Med Imaging ; 41(10): 2693-2703, 2022 10.
Article in English | MEDLINE | ID: mdl-35436187

ABSTRACT

Bilinear models such as low-rank and dictionary methods, which decompose dynamic data to spatial and temporal factor matrices are powerful and memory-efficient tools for the recovery of dynamic MRI data. Current bilinear methods rely on sparsity and energy compaction priors on the factor matrices to regularize the recovery. Motivated by deep image prior, we introduce a novel bilinear model, whose factor matrices are generated using convolutional neural networks (CNNs). The CNN parameters, and equivalently the factors, are learned from the undersampled data of the specific subject. Unlike current unrolled deep learning methods that require the storage of all the time frames in the dataset, the proposed approach only requires the storage of the factors or compressed representation; this approach allows the direct use of this scheme to large-scale dynamic applications, including free breathing cardiac MRI considered in this work. To reduce the run time and to improve performance, we initialize the CNN parameters using existing factor methods. We use sparsity regularization of the network parameters to minimize the overfitting of the network to measurement noise. Our experiments on free-breathing and ungated cardiac cine data acquired using a navigated golden-angle gradient-echo radial sequence show the ability of our method to provide reduced spatial blurring as compared to classical bilinear methods as well as a recent unsupervised deep-learning approach.


Subject(s)
Algorithms , Image Processing, Computer-Assisted , Image Processing, Computer-Assisted/methods , Magnetic Resonance Imaging/methods , Neural Networks, Computer , Respiration
4.
Proc IEEE Int Symp Biomed Imaging ; 2021: 1099-1102, 2021 Apr.
Article in English | MEDLINE | ID: mdl-34691363

ABSTRACT

Bilinear models such as low-rank and compressed sensing, which decompose the dynamic data to spatial and temporal factors, are powerful and memory efficient tools for the recovery of dynamic MRI data. These methods rely on sparsity and energy compaction priors on the factors to regularize the recovery. Motivated by deep image prior, we introduce a novel bilinear model, whose factors are regularized using convolutional neural networks. To reduce the run time, we initialize the CNN parameters by pre-training them on pre-acquired data with longer acquistion time. Since fully sampled data is not available, pretraining is performed on undersampled data in an unsupervised fashion. We use sparsity regularization of the network parameters to minimize the overfitting of the network to measurement noise. Our experiments on on free-breathing and ungated cardiac CINE data acquired using a navigated golden-angle gradient-echo radial sequence show the ability of our method to provide reduced spatial blurring as compared to low-rank and SToRM reconstructions.

5.
Article in English | MEDLINE | ID: mdl-34336134

ABSTRACT

We introduce a novel generative smoothness regularization on manifolds (SToRM) model for the recovery of dynamic image data from highly undersampled measurements. The proposed generative framework represents the image time series as a smooth non-linear function of low-dimensional latent vectors that capture the cardiac and respiratory phases. The non-linear function is represented using a deep convolutional neural network (CNN). Unlike the popular CNN approaches that require extensive fully-sampled training data that is not available in this setting, the parameters of the CNN generator as well as the latent vectors are jointly estimated from the undersampled measurements using stochastic gradient descent. We penalize the norm of the gradient of the generator to encourage the learning of a smooth surface/manifold, while temporal gradients of the latent vectors are penalized to encourage the time series to be smooth. The main benefits of the proposed scheme are (a) the quite significant reduction in memory demand compared to the analysis based SToRM model, and (b) the spatial regularization brought in by the CNN model. We also introduce efficient progressive approaches to minimize the computational complexity of the algorithm.

6.
IEEE Trans Med Imaging ; 40(11): 3102-3112, 2021 11.
Article in English | MEDLINE | ID: mdl-33720831

ABSTRACT

We introduce a generative smoothness regularization on manifolds (SToRM) model for the recovery of dynamic image data from highly undersampled measurements. The model assumes that the images in the dataset are non-linear mappings of low-dimensional latent vectors. We use the deep convolutional neural network (CNN) to represent the non-linear transformation. The parameters of the generator as well as the low-dimensional latent vectors are jointly estimated only from the undersampled measurements. This approach is different from traditional CNN approaches that require extensive fully sampled training data. We penalize the norm of the gradients of the non-linear mapping to constrain the manifold to be smooth, while temporal gradients of the latent vectors are penalized to obtain a smoothly varying time-series. The proposed scheme brings in the spatial regularization provided by the convolutional network. The main benefit of the proposed scheme is the improvement in image quality and the orders-of-magnitude reduction in memory demand compared to traditional manifold models. To minimize the computational complexity of the algorithm, we introduce an efficient progressive training-in-time approach and an approximate cost function. These approaches speed up the image reconstructions and offers better reconstruction performance.


Subject(s)
Image Processing, Computer-Assisted , Magnetic Resonance Imaging , Algorithms , Neural Networks, Computer , Radionuclide Imaging
7.
IEEE Trans Med Imaging ; 39(12): 3933-3943, 2020 12.
Article in English | MEDLINE | ID: mdl-32746136

ABSTRACT

We introduce a kernel low-rank algorithm to recover free-breathing and ungated dynamic MRI from spiral acquisitions without explicit k-space navigators. It is often challenging for low-rank methods to recover free-breathing and ungated images from undersampled measurements; extensive cardiac and respiratory motion often results in the Casorati matrix not being sufficiently low-rank. Therefore, we exploit the non-linear structure of the dynamic data, which gives the low-rank kernel matrix. Unlike prior work that rely on navigators to estimate the manifold structure, we propose a kernel low-rank matrix completion method to directly fill in the missing k-space data from variable density spiral acquisitions. We validate the proposed scheme using simulated data and in-vivo data. Our results show that the proposed scheme provides improved reconstructions compared to the classical methods such as low-rank and XD-GRASP. The comparison with breath-held cine data shows that the quantitative metrics agree, whereas the image quality is marginally lower.


Subject(s)
Magnetic Resonance Imaging , Respiration , Algorithms , Artifacts , Breath Holding , Heart/diagnostic imaging , Image Processing, Computer-Assisted , Magnetic Resonance Imaging, Cine
8.
Proc IEEE Int Symp Biomed Imaging ; 2020: 1052-1055, 2020 Apr.
Article in English | MEDLINE | ID: mdl-33603956

ABSTRACT

We propose a deep self-learning algorithm to learn the manifold structure of free-breathing and ungated cardiac data and to recover the cardiac CINE MRI from highly undersampled measurements. Our method learns the manifold structure in the dynamic data from navigators using autoencoder network. The trained autoencoder is then used as a prior in the image reconstruction framework. We have tested the proposed method on free-breathing and ungated cardiac CINE data, which is acquired using a navigated golden-angle gradient-echo radial sequence. Results show the ability of our method to better capture the manifold structure, thus providing us reduced spatial and temporal blurring as compared to the SToRM reconstruction.

9.
Magn Reson Med ; 82(2): 706-720, 2019 08.
Article in English | MEDLINE | ID: mdl-31006916

ABSTRACT

PURPOSE: To develop a continuous-acquisition cardiac self-gated spiral pulse sequence and a respiratory motion-compensated reconstruction strategy for free-breathing cine imaging. METHODS: Cine data were acquired continuously on a 3T scanner for 8 seconds per slice without ECG gating or breath-holding, using a golden-angle gradient echo spiral pulse sequence. Cardiac motion information was extracted by applying principal component analysis on the gridded 8 × 8 k-space center data. Respiratory motion was corrected by rigid registration on each heartbeat. Images were reconstructed using a low-rank and sparse (L+S) technique. This strategy was evaluated in 37 healthy subjects and 8 subjects undergoing clinical cardiac MR studies. Image quality was scored (1-5 scale) in a blinded fashion by 2 experienced cardiologists. In 13 subjects with whole-heart coverage, left ventricular ejection fraction (LVEF) from SPiral Acquisition with Respiratory correction and Cardiac Self-gating (SPARCS) was compared to that from a standard ECG-gated breath-hold balanced steady-state free precession (bSSFP) cine sequence. RESULTS: The self-gated signal was successfully extracted in all cases and demonstrated close agreement with the acquired ECG signal (mean bias, -0.22 ms). The mean image score across all subjects was 4.0 for reconstruction using the L+S model. There was good agreement between the LVEF derived from SPARCS and the gold-standard bSSFP technique. CONCLUSION: SPARCS successfully images cardiac function without the need for ECG gating or breath-holding. With an 8-second data acquisition per slice, whole-heart cine images with clinically acceptable spatial and temporal resolution and image quality can be acquired in <90 seconds of free-breathing acquisition.


Subject(s)
Cardiac-Gated Imaging Techniques/methods , Image Interpretation, Computer-Assisted/methods , Magnetic Resonance Imaging, Cine/methods , Breath Holding , Heart/diagnostic imaging , Heart/physiology , Humans , Respiration
10.
Magn Reson Imaging ; 36: 159-166, 2017 Feb.
Article in English | MEDLINE | ID: mdl-27746392

ABSTRACT

Respiratory motion during Magnetic Resonance (MR) acquisition causes strong blurring artifacts in the reconstructed images. These artifacts become more pronounced when used with the fast imaging reconstruction techniques like compressed sensing (CS). Recently, an MR reconstruction technique has been done with the help of compressed sensing (CS), to provide good quality sparse images from the highly under-sampled k-space data. In order to maximize the benefits of CS, it is obvious to use CS with the motion corrected samples. In this paper, we propose a novel CS based motion corrected image reconstruction technique. First, k-space data have been assigned to different respiratory state with the help of frequency domain phase correlation method. Then, multiple sparsity constraints has been used to provide good quality reconstructed cardiac cine images with the highly under-sampled k-space data. The proposed method exploits the multiple sparsity constraints, in combination with demon based registration technique and a novel reconstruction technique to provide the final motion free images. The proposed method is very simple to implement in clinical settings as compared to existing motion corrected methods. The performance of the proposed method is examined using simulated data and clinical data. Results show that this method performs better than the reconstruction of CS based method of cardiac cine images. Different acceleration rates have been used to show the performance of the proposed method.


Subject(s)
Heart/diagnostic imaging , Heart/physiology , Image Processing, Computer-Assisted/methods , Magnetic Resonance Imaging/methods , Algorithms , Artifacts , Computer Simulation , Humans , Motion
SELECTION OF CITATIONS
SEARCH DETAIL
...